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Abstract— Linear synchronous motors are finding expanded
use in high-performance applications where high speed and
high accuracy is essential. The main problem in improving
the tracking performance of linear synchronous motors is
the presence of force ripple caused by mismatched current
waveforms and unbalanced motor phases or amplifier gains.
This paper presents a method to optimize the waveform of the
phase currents in order to generate smooth force. The optimized
current waveforms produces minimal copper losses and max-
imizes motor efficiency. The waveforms are implemented in a
waveform generator of the motion controller and approximated
with Fourier series. The optimization method proposed here
consist of three stages. In every stage different harmonic waves
of the force ripple are reduced. A comparison of the tracking
performance with optimized waveforms and with sinusoidal
waveforms shows the effectiveness of the method.

I. I NTRODUCTION

Permanent magnet (PM) linear synchronous motors (LSM)
are beginning to find widespread industrial applications,
particularly for tasks requiring a high precision in positioning
such as various semiconductor fabrication and inspection
processes [1]. The main benefits of PM LSMs are the high
force density achievable and the high positioning precision
and accuracy associated with the mechanical simplicity of
such systems. The electromagnetic force is applied directly
to the payload without any mechanical transmission such as
chains or screw couplings. This greatly reduces nonlinearities
and disturbances caused by backlash and additional frictional
forces [2]. Todayt’s state-of-the-art linear motors can, typi-
cally, achieve velocities up to10m/s and accelerations of
10 g [3].

The more predominant nonlinear effects underlying a
PM LSM system are friction and force ripple arising from
imperfections in the underlying components. In order to
avoid force ripple different methods have been developed.
In [4] several techniques of torque ripple minimization for
rotating motors are reviewed. In [5] a force ripple model
is developed and identification is carried out with a force
sensor and a frictionless air bearing support of the motor
carriage. Position-triggered repetitive control is proposed in
[6] in order to reduce the effect of force ripple. Other
approaches are based on iterative learning control [7] or
adaptive control [8]. The main problem in adaptive control is
the low signal-to-noise ratio at high motor speeds [9]. In [10]
a force ripple compensation method for PM LSM systems

with electronic commutated servo amplifiers was presented.
The parameters of the force ripple model are identified in an
offline procedure.

In this paper a force ripple compensation method for
software commutated servo amplifiers is proposed. The ad-
ditional input signal of a software commutated amplifier
is used to optimize the operation of the motor. The paper
proposes a method for the design of the input signals of the
amplifier for minimization of force ripple an maximization
of motor efficiency. The waveforms of the phase currents are
optimized in order to get smooth force and minimal copper
losses. In order to optimize the currents waveforms the force
functions of the phases are identified. The identification is
performed by measuring the control signals in a closed
position control loop. The waveform generation is directly
integrated in the software commutation module of the motion
controller. The optimal current waveforms are approximated
with Fourier series.

II. EXPERIMENTAL SETUP

A. Linear Motor

The motors considered here are PM LSM with epoxy
cores. A PM LSM consists of a secondary and a moving
primary. There are two basic classifications of PM LSMs:
epoxy core (i.e. non-ferrous, slotless) and iron core. Epoxy
core motors have coils wound within epoxy support. These
motors have a closed magnetic path through the gap since
two magnetic plates ”sandwich” the coil assembly [11].
The secondary induces a multipole magnetic field in the air
gap between the magnetic plates. The electromagnetic thrust
force is produced by the interaction between the permanent
magnetic field in the secondary and the magnetic field in the
primary driven by the phase currents of the servo amplifier.
The linear motor under evaluation is a current-controlled
three-phase motor driving a carriage supported by roller
bearings. The motor drives a mass of total2Kg and is
vertical mounted.

B. Servo Amplifier

The servo amplifier employed in the setup is a PWM type
with closed current control loops. The software commutation
of the three phases is performed in the motion controller with
the help of the position encoder. This commutation method
requires two current command signals, from the controller.



The third phase current depends on the others, because of
the wye motor connection:

iC = −iA − iB (1)

The maximum input signalsuA, uB of the servo amplifier
(±10V ) correlate to the peak currents of the current loops.
The dynamics of the servo amplifier will not be considered as
they play a minor role in the dynamics of the whole system.

III. SYSTEM MODELING

The thrust force is produced by the interaction between
the magnetic field in the secondary and the magnetic field of
the phase windings. The thrust force is proportional to the
magnetic field and the phase currentsiA, iB , iC . The back-
EMF induced in a phase winding (eA, eB , eC) is proportional
to the magnetic field and the speed of the motor. The total
thrust forceFthrust is the sum of the forces produced by all
phases:

ẋ Fthrust =
∑
p

ep(x) ip ; p ∈ {A,B,C} (2)

The back-EMF waveformepẋ can also be interpreted as the
force function of the phasesp (KMp

(x)).

Fthrust =
∑
p

KMp
(x) ip ; p ∈ {A,B,C} (3)

Force ripple is an electro-magnetic effect and causes a pe-
riodic variation of the force constant. Only if the back-EMF
waveforms are sinusoidal and balanced, symmetric sinusoidal
commutation of the phase currents produces smooth force.
Force ripple occurs if the motor current is different from zero,
and its absolute value depends on the required thrust force
and the relative position of the primary to the secondary.

There are several sources of force ripple:
• motor

– harmonics of back-EMFs
– amplitude imbalance of back-EMFs
– phase imbalance of back-EMFs

• amplifier
– offset currents
– imbalance of current gains

Offset currents lead to force ripple with the same period
as the commutation period. This force ripple is independent
of the desired thrust force. Amplitude or phase imbalance
of the motor and imbalance of amplifier gains lead to force
ripple with half commutation period which scale in direct
proportion to the desired thrust force. Akth order harmonic
of a back-EMF produces(k − 1)th and (k + 1)th order
harmonic force ripple if a sinusoidal current is applied.

Force ripple with the same period as the commutation
period is independent of the desired thrust, all higher order

harmonics scale in direct proportion to the desired thrust
because of the linearity of the force equation (2). Fig. 1
shows the block diagram of a servo system with PM LSM.
The friction force is modeled with a kinetic friction model.
In the kinetic friction model the friction force is a function
of velocity only.

IV. COMPENSATION OFFORCERIPPLE

The method for force ripple compensation consist of three
stages. In every stage different harmonic waves of the ripple
spectrum are reduced. In order to optimize the waveforms
of the currents, identification of the force functionsKMp

(x)
is essential. The main idea of the proposed method is to
identify the force functions in a closed position control loop
by measuring the control signalu of the position controller
at constant load forceFload as a function of the positionx.
Neither additional sensor nor device for position adjustment
are necessary. In the experimental setup the constant load
force is produced by the force of gravitation. In order to
avoid inaccuracy by stiction the measurement is achieved
with moving carriage.

A. Experimental Analysis of Force Ripple

In order to analyze the force ripple of the motor a
sinusoidal reference current is applied:

uA(u, ϑ) = u
2
3

sin (ϑ(x)) + oA (4)

uB(u, ϑ) = u
2
3

sin
(
ϑ(x) +

2π
3

)
+ oB

with ϑ(x) =
π

τp
(x− x0)

whereuA, uB are the current commands of the two phases,
u is the output of the position controller,x is the position of
the carriage,τp is the pole pitch andx0 is the zero position
with maximum force. In the first stage, the DC components of
the command signals (oA, oB) are chosen equal zero. Fig. 2
shows the control signalsu, uA, uB versus the positionx.
The ripple on the command signalu is caused by force ripple.
The controller compensates the force ripple by changing the
control signal over the position. If the speed of the motor is
high, the force ripple increases the tracking error.

Frequency domain analyses of the control signal indicates
that the fundamental corresponds to the commutation period
2 τp. In order to estimate the parameters of the ripple a least
square estimation of the model parameters (5) was applied.
A least square estimation is chosen, because noise overlays
the control signal.

f(x,θ) = θ1 + θ2 x+
N∑
k=1

(
θ2k+1 sin

(
k π

x

τp

)
(5)

+θ2k+2 cos
(
k π

x

τp

))
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Fig. 1. Nonlinear model of a PM LSM servo system
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Fig. 2. Phase currents at load forceFload = 20N

whereθk are the estimated parameters. Withθ1 the sum
of load force and friction is estimated. The modeled spring
force (θ2) is necessary, because the control signal rises with
rising positions. This is caused by wire chains. Fig. 3 shows

the amplitudes of the sinusoids
√
θ2

2k+1 + θ2
2k+2 versus the

order of the harmonicsk.

The fundamental period (k = 1) corresponds to2 τp
(30mm). The amplitude of this sinusoid is independent of
the load force. The higher order harmonics (k > 1) scale in
direct proportion to the load force because of the linearity of
the force equation (3).

B. Compensation of Current Independent Force Ripple

The curve of the phase current commanduA in Fig. 2
shows that this current independent ripple produces a DC
component of the current command. This DC component
compensates offsets in the analog circuits of the servo
amplifier. In the first stage the DC components of the phase
current commands are calculated and applied in (4).
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Fig. 3. Spectrum of the command signal

oA =
a

3
cosα (6)

oB =
a

2
√

3
sinα− a

6
cosα

where a is the amplitude andα is the phase of the
fundamental of the ripple. In an servo system with iron-
less motor the DC components compensate the offsets of the
amplifier. If an iron motor is employed, the DC components
generate a sinusoidal force which compensates the cogging
force.

C. Identification of Force Functions

In the next stage the force functions of the phases are
identified. In order to optimize the current waveforms, it is
essential to identify the amplitudes and phases of the force
functions properly. The motor efficiency depends directly on
a properly identified commutation zero positionx0 which
depends on the phase lag of the force functions. In [12]
a sinusoidal commutation is applied to identify the force
functions. With the help of sinusoidal commutation it is
impossible to identify the force functions independently. In
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Fig. 4. Square-wave commutation

this paper a square-wave commutation is applied, in order to
identify the force functions independently.

Fig. 4 shows the phase currentsiA, iB , iC over the position
x, when square-wave commutation is applied. The minimum
values of the phase currents correlate to the maximum values
of the force functions. In square-wave commutation always
two phases share the same absolute value of current, which
depends on the control signalu and the current gains of the
amplifierKSp .

|ip| = KSp

u√
3

; p ∈ {A,B,C} (7)

Since only two phase currents are independent, the force
equation can be described as:

Fthrust = KA(ϑ)uA +KB(ϑ)uB (8)

Since the load force is constant over the position, it is
possible to identify the force functionsKA andKB with the
measured phase current control signals (uA, uB).

D. Current Waveform Optimization

Aim of the current waveform optimization is to obtain
reference waveforms of the phase currents which generates
smooth force. The main condition of the optimization is
Fthrust = const in (8). The optimal current waveforms for
generation of smooth force are not uniquely defined unless
additional constraints are defined. The constraint considered
here are:

• The sum of all phase currents is equal zero (1).
• Minimum copper losses (9, 10)
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Fig. 5. Optimized waveforms

Pcu(x) =
∑
p

Rp i
2
p(x) ; p ∈ {A,B,C} (9)

⇒ min
uA,uB

f(uA, uB) = u2
A + u2

B + uA uB (10)

In Fig. 5 the optimized phase current waveforms are
shown. In order to implement the waveforms in the motion
controller, the following approximation is applied:

uA(u, ϑ) = u
2
3

(sin(ϑ) + a3 sin(3ϑ+ α3)) + oA (11)

uB(u, ϑ) = u
2
3

(
sin
(
ϑ+

2π
3

)
+ b3 sin(3ϑ+ β3)

)
+ oB

Fig. 6 compares the commutation functions. The dashed
line shows the control signal when a sinusoidal commutation
plus offset compensation is employed (4). The solid line
shows the control signal when optimized waveforms are
applied (11). The ripple of the control signal is significantly
reduced when the optimized waveforms are applied.

E. Fine tuning of the waveforms

After the numerical optimization the motor efficiency is
maximized, but the control signal still consists of some higher
order ripple. The higher order ripple is caused by unmodeled
harmonics of the force functions. In order to reduce some of
the higher order ripple a fine tuning of the waveforms is
performed. The main idea of the fine tuning algorithm is
to measure the phase current control signals at constant load
force. The fine tuning is performed with previously optimized
waveforms in order to maximize motor efficiency. The still
remaining higher order ripple of the control signal modulates
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Fig. 6. Command signals with sinusoidal versus optimized waveforms

the optimized waveforms. The fine tuning algorithm approx-
imates the shapes of the measured phase command signals
with Fourier series. Fig. 7 compares the measured phase
command signals with the approximation. The approximation
adds one additional harmonic to the approximation in (11).
Fig. 8 compares the commutation functions of the second
stage with the third stage.
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Fig. 7. Fine Tuned Waveforms

Fig. 9 compares the command signal spectrum of the op-
timization process. The upper left graph shows the spectrum
before any optimization is applied. The upper right graph
shows the spectrum after the offset compensation is applied.
The fundamental is significantly reduced. In the lower left
graph the spectrum of the control signal of numerically
optimized waveforms is shown. This stage reduces the2th
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Fig. 8. Command signals with optimized versus fine tuned waveforms

order harmonics. The lower right graph shows the spectrum
of the control signal for fine tuned waveforms. This last stage
reduces the2th and4th order harmonics. After the fine tuning
of the waveforms no dominant harmonic exists in the control
signal.
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Fig. 9. Spectrum of the command signal

F. Controller Design

Fig. 10 shows the block diagram of the servo control
system. In order to achieve a better tracking performance, a
feedforward controller is applied. Feedback control without
feedforward control always introduces a phase lag in the
command response. Feedforward control sends an additional
output, besides the feedback output, to drive the servo am-
plifier input to desired thrust force. The feedforward control
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Fig. 10. Controller design

compensates the effect of the carriage mass and the friction
force. The friction force is modeled by a kinetic friction
model and identified with experiments at different velocities.
The stability of the system is determined by the feedback
loop (PD controller). The compensation of the force ripple
is completely performed in the waveform generator with
Fourier series approximation. Fig. 11 compares the tracking
error of a movement without ripple compensation with the
movement with ripple compensation. In this measurement,
the carriage moves from position−25mm to position15mm
and back to position−25mm with vmax = 200mm/s. If the
ripple compensation is applied, the tracking error is reduced
significantly.
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Fig. 11. Tracking error

V. CONCLUSION

In this paper, a method for optimization of the current
waveforms is presented. The optimized current waveforms
generate smooth force and produce minimal copper losses
which maximizes motor efficiency. The optimized current
shapes are valid for any velocity and any desired thrust force.
In order to identify the force functions, no additional sensors
are required. Experiments show that the tracking performance
is significantly improved if the optimized waveforms are
applied. The described optimization method is implemented
successfully in the motion controllers of several machines

for semiconductor production to improve the tracking per-
formance.
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