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Abstract

The unbiased finite impulse response (UFIR) filter is a universal estimator for linear systems. The extended UFIR (EFIR)
is the counterpart of the UFIR for nonlinear systems and operates similarly to the well known extended Kalman filter
(EKF). Pose estimation of mobile robots with quantized position measurements is an application, where the EKF leads
to suboptimal accuracy. In this paper a pose estimator for quantized measurements based on the EFIR algorithm is
developed. Experimental results conducted with a mobile robot on an array of floor installed RFID tags show that the
proposed algorithm outperforms the quantized EKF in many cases.

1 Introduction

Along with the Kalman filter (KF), the unbiased finite im-
pulse response (UFIR) filter is a universal linear estimator.
The UFIR utilizes the most recent past measurements on
a horizon of points and ignores the noise statistics of the
dynamic system [1]. The KF is optimal only, if a system
is linear and Gaussian and the noise statistics are known.
Therefore the UFIR outperforms the KF in some practical
applications, in which these requirements are not met [1].
Application of this research is the global localization of
mobile robots using a grid of floor installed RFID tags.
Global localization is the process of estimating position
and heading (pose) of a mobile robot in Cartesian space
without knowledge of the initial pose of the robot. A pos-
sible solution for global localization is the usage of auto-
ID technology as artificial landmarks. Kiva Systems (now
Amazon Robotics) uses 2D bar codes on the floor, which
can be detected with a camera by the robots [2]. These bar
codes specify the pathways and guarantee accurate local-
ization. Drawbacks of this solution are the risk of polluting
the bar codes and the need for predefined pathways, which
restrict the movements of the robots.
Another possible solution for global localization is the us-
age of RFID technology as artificial landmarks. Passive
RFID technology is often used in logistics and warehouse
management for object identification and tracking. Typ-
ically the field of application is defined by the detection
range of the RFID tags, which depends on the operation
frequency. Usually LF or HF technology is used for self-
localization of mobile systems (reader localization) and
UHF technology is used for object identification in logis-
tics applications [3].
The basic idea of using passive RFID tags as artificial land-
marks for self-localization of mobile systems is not new.
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Figure 1 Underlay with integrated RFID tags for local-
ization of mobile robots

LF RFID tags are used to mark a predefined pathway for
navigation of Automated Guided Vehicles (AGVs) in in-
dustry since more than two decades [4]. A known disad-
vantage of using LF RFID tags for vehicle navigation is
the speed limitation of the vehicles caused by the low data
transfer rate of LF tags. Also LF tags are comparatively
expensive and the ground must be prepared with holes for
these tags [5]. Owing to the cost of installation and mate-
rial, the tags are installed on the pathway of the vehicles
only.
An inexpensive and much more flexible option is the usage
of a grid of floor installed standard HF RFID tags. This al-
lows free navigation of vehicles without the need of prede-
fined pathways. A commercially available product, which
employs passive HF RFID tags in a floor is the NaviFloor®

manufactured by Future-Shape. The NaviFloor® underlay
is a glass fiber reinforcement in which passive HF RFID
tags are embedded (see Figure 1). It is specially devel-
oped for installation beneath artificial flooring. Technical
details of the NaviFloor® can be found in section 5.1.
This paper extends the work we have presented in [6, 7].
The main contribution of this paper is the development of
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a novel localization algorithm, which fuses the informa-
tion from RFID readings with odometry using the EFIR
algorithm. The proposed algorithm requires a RFID reader
with the only capability of detecting tags, no additional
sensory information such as RSSI is required. We compare
our localization algorithm based on EFIR filtering with the
Quantized Kalman filter we have developed in [6, 7]. Ex-
perimental results show that the proposed algorithm out-
performs the quantized EKF in many cases.
The rest of the paper is organized as follows: In section 2
the localization problem using floor installed RFID tags is
defined. Section 3 presents related work. The compared
localization algorithms are described in section 4. In sec-
tion 5 the experimental setup including mobile robot and
NaviFloor® is described. Experimental results are pre-
sented in section 6. Finally, the conclusions are given in
section 7.

2 Problem Formulation

We consider the problem of localizing a mobile robot in a
known environment. The mobile robot is equipped with a
RFID reader and moves over a floor with n RFID tags. The
position of the tags is known a priori. The robot moves
in 2D space, the pose of the robot (position and head-
ing) in the world frame is defined as x = (x, y, θ)T in the
configuration space (C-space) C, which is a subset of R3.
C = R2 × S1 takes into account that θ ± 2π yields to equiv-
alent headings (θ ∈ [0, 2π)). If a tag Ti ∈ {T1, . . . ,Tn}

with position ti = (xi, yi)T (defined in the world frame) is
in range of the reader antenna, it is detected by the robot.
The area where a tag can be detected by the reader is the
detection area A. The detection area can be described in
the antenna frame, which is in a fixed position in the robot
frame. Size and shape ofA depend on the reader antenna,
the tag type and the distance between them and is the same
for all tags. The position of a tag in the antenna frame
zi = ( xA

i, yA
i)T can be described by

zi = h(x, ti), (1)

where x is the pose of the robot and ti is the position of the
tag Ti, both defined in the world frame. Figure 2 shows
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Figure 2 Position of RFID tag in world frame ( xW
i, yW

i)T

and in antenna frame ( xA
i, yA

i)T. The detection areaA is
marked in gray.

the position of a RFID tag in the world frame and in the an-
tenna frame. The rotation angle between the antenna frame

and the world frame depends on the heading of the robot
(θ) and the constant alignment of the antenna (ϕ) with re-
spect to the robot frame.
The probability of detecting a tag Ti at a position zi =

( xA , yA )T inside the detection areaA of the reader is nearly
1 and outside the area it is zero:

p(Ti|zi)

1 if zi ∈ A

0 else
(2)

False positive readings do not arise, owing to the short
range of HF RFID technology. Therefore, the RFID reader
can be treated as a binary detector if zi ∈ A or not. All
positions zi that fall in the detection area A of the reader
lead to the same measurement.
A RFID measurement can be interpreted as a quantized
measurement of a position, which may depend on the head-
ings of the robot. The quantization depends on the size of
A and can be modeled by quantization noise. This inter-
pretation leads to a localization algorithm, which is based
on Quantized Kalman filtering [6, 7].

3 Related Works

In order to allow free navigation of mobile robots, some re-
search on RFID localization using a grid of floor-installed
RFID tags has been done. Kodaka et al. apply a Particle
filter (Sequential Monte Carlo method, MCPF) for pose
estimation of a mobile robot using floor based RFID tag
and odometry [8]. Mi and Takahashi localize an omnidi-
rectional mobile robot using a RFID system with multiple
readers [9]. They compare configurations with different
numbers of readers and tag densities [10]. They develop
a likelihood function of tag detection which is suitable for
localization using MCPF. Main drawback of the MCPF is
the computational expense associated with it. Thus, there
is some effort to replace the MCPF with methods based
on Kalman filtering. Choi et al. propose the fusion of ul-
trasonic sensors, odometry and readings of HF RFID tags,
which are integrated in the floor [11]. This localization al-
gorithm is based on Kalman filtering but needs additional
sensors and mapping of the environment. Lee et al. have
developed a Gaussian measurement model for UHF RFID
tags embedded in the floor, which is suitable for Kalman
filtering [12]. Its application in a Kalman filter has less
computational expense but provides not the same localiza-
tion accuracy as a MCPF.
There is also some research on UHF tags at walls or ceil-
ings for self-localization of mobile robots. DiGiampaolo
and Martinelli have developed a Quantized Extended
Kalman Filter algorithm for localization on mobile robots
using UHF RFID tags at the ceiling [13]. Boccadoro et.
al. propose a Constrained Kalman filter for global local-
ization of mobile robots using UHF RFID technology and
odometry [14]. In that research, the tags are placed at the
walls in an indoor environment. Levratti et. al. present
a localization algorithm for robotic lawnmowers based on
the Constrained Kalman filter proposed in [14]. It merges
odometry with UHF RFID tags, which are placed at the
borders of the working area [15].
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4 Compared Localization Algo-
rithms

This section describes the pose estimation with three differ-
ent types of estimators. A pose estimator for localization
of mobile robots needs a motion model of the mobile robot
and a sensor model of its measurements. The compared
algorithms are independent of the motion model. For ex-
perimental evaluation, we use an omnidirectional mobile
robot with Mecanum wheels. The motion model of this
mobile robot is described in section 5.3. In this section,
the sensor model of RFID readings and the algorithms for
measurement updates of the pose estimators are described.
A RFID measurement gives the information if a tag Ti with
the position ti is inside or outside the detection area A of
the reader. Beside this binary nature of RFID measure-
ments there are additional sources of uncertainty:

• Communication delay between the RFID reader and
the tag: This delay is caused by the limited data rate of
the air interface and the collision avoidance procedure
for multi tag readings.

• Communication delay between the control system and
the RFID reader: This delay is caused by the process-
ing time of the reader and the limited data rate on the
interface to the reader.

• Variations in tag placement: Due to production toler-
ances and manual placement, the position of the RFID
tags may differ from the regular grid.

The uncertainty in the tag placement can be treated as
Gaussian noise. The communication delays causes addi-
tional noise that depends on the speed of the vehicle.
With this additional uncertainty, the measurement function
(1) can be extended:

zi = h(x, ti,v), (3)

where v is the measurement noise caused by communica-
tion delays and tag misplacement due to production toler-
ances. We assume that v is normally distributed with zero
mean.

4.1 Sequential Monte Carlo method,
Particle Filter (MCPF)
As mentioned before, usually MCPFs are deployed in
RFID localization algorithms, because of the highly non-
linear and quantized measurements by RFID readers. A
MCPF will be used as benchmark for our proposed local-
ization algorithms.
In the motion update of a MCPF, all particles are sam-
pled with a random generator and distributed through the
motion model of the mobile robot. The measurement up-
date in a MCPF is straight forward (see also [8]). Af-
ter the mobile robot has detected a RFID tag, each parti-
cle x[m]

k is distributed through the measurement function
z[m]

i = h(x[m]
k , ti,0) and then weighted with the associated

probability (p[m]
k = p(z[m]

i )). The measurement noise can
be modeled with a normal distribution vk ∼ N(0,Rk).

Algorithm 1 shows the outline of the MCPF algorithm. In-
puts are the particle set Xk−1 of the previous time step, the
input vector uk for odometry, the tag measurement vector
yk, and the map with the positions of the RFID tags. The
return value is the new particle set Xk for the actual time
step.

Algorithm 1 MCPF
1: function MCPF(Xk−1,uk,yk,map)
2: X̄k = ∅ . initial particle set
3: for each x[m]

k−1 ∈ Xk−1 do
4: wk = sample(uk) . motion noise
5: x[m]

k = f (x[m]
k−1,uk,wk) . prediction

6: Ti = yk . RFID reader measurement
7: if Ti then . tag detected
8: ti = pos(map,Ti) . position of tag in map
9: z[m]

i = h(x[m]
k , ti,0) . pos. in ant. frame

10: p[m]
k = p(z[m]

i ) . propability of detection
11: else
12: p[m]

k = p(no tag) . no measurement
13: end if
14: X̄k = X̄k+ < x[m]

k , p[m]
k > . insert particle

15: end for each
16: Xk = resample(X̄k)
17: return Xk . new particle set
18: end function

4.2 Quantized Kalman Filtering (QEKF)
In this section, the Quantized Kalman filter we have devel-
oped in [6, 7] is summarized. The detection of a tag can be
considered as a quantized measurement of a position. The
center of the detection areaA defines the position measure-
ment in the antenna frame. The size of A is a measure of
the uncertainty in the measurement and can be modeled as
quantization noise. After detecting the tag Ti, the predicted
measurement is defined by ẑi = h(x̂k, ti,0).
The Gaussian-Fit Algorithm proposed by Curry [16, p.
23–25] is applied to nonlinear Kalman filtering. The first
and second moment of p(zi|zi ∈ A) are needed in the mea-
surement update of a nonlinear KF. For notational conve-
nience let

µ = E(zi|zi ∈ A) , Σ = cov(zi|zi ∈ A).

Mean µ and covariance Σ of the detection area A can be
calculated in advance using numerical integration (see [6]).
Additional measurement noise caused by communication
delays and tag misplacement due to production tolerances
can be modeled with a random variable vk. It is assumed
that vk ∼ N(0,Rk).
Before the measurement update is performed, the in-
novation of the measurement Ti is checked. If ẑi =

h(x̂k, ti,0) ∈ A, the detection of Ti is predicted and the in-
novation is equal zero. The described algorithm can be ap-
plied to the measurement update of any nonlinear Kalman
filter. The application of the standard EKF algorithm leads
to the algorithm which is shown in Algorithm 2, where
Hk = ∂h

∂x (x̂k, ti,0), Vk = ∂h
∂v (x̂k, ti,0), Φk =

∂f
∂x (x̂k,uk,0)

andWk =
∂f
∂w (x̂k,uk,0).
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Inputs are the state estimate x̂k−1 of the previous time step,
the input vector uk for odometry, the tag measurement vec-
tor yk and the RFID map. The return value is the state
estimate x̂k for the actual time step.

Algorithm 2 Quantized EKF Filter
1: function QEKF(x̂k−1,yk,uk,map)
2: x̂−k = f (x̂k−1,uk,0) . prediction
3: P −k = ΦkPk−1Φ

T
k +WkQkW

T
k

4: Ti = yk . RFID reader measurement
5: if Ti then . tag detected
6: ti = pos(map,Ti) . position of tag in map
7: ẑi = h(x̂−k , ti,0) . position in antenna frame
8: if ẑi ∈ A then
9: ∆y = 0 . no innovation

10: else
11: ∆y = µ − ẑi . innovation
12: end if
13: Kk = PkH

T
k

(
HkPkH

T
k + Vk(Rk + Σ)V T

k

)−1

14: x̂k = x̂k +Kk ∆y
15: Pk = (I −KkHk)P −k
16: else
17: x̂k = x̂−k . no measurement
18: Pk = P −k
19: end if
20: return x̂k,Pk

21: end function

4.3 Quantized Extended Finite Impulse Re-
sponse (QEFIR) Filtering

In this section a localization algorithm based on EFIR is
developed. The algorithm uses a similar approach as we
have proposed for the Quantized EKF (QEKF) in the pre-
vious section. The EFIR algorithm ignores the noise statis-
tics of the dynamics system, which means, the knowledge
ofQk andRk is not needed. The only free design parame-
ter of the filter is the horizon of measurements N = Nopt for
filtering. The fundamental structure of the recursive EFIR
algorithm is similar to the EKF, but the EFIR filters the past
N measurements yk−N · · ·yk and inputs uk−N · · ·uk for ev-
ery time step k.
For time step s = k − N − 1 it needs an initial estimate
xs and the generalized noise power gain Gs, which can
be obtained from past measurements by using the mapping
matrix (see [1]). For simplification the initial generalized
noise power gain can be set to unity Gs = I (see [17]).
In our application this simplification does not reduce the
localization accuracy.
Algorithm 3 shows the outline of the QEFIR algorithm.
Inputs are the input vector u, the tag measurement vec-
tor y, an initial pose xs and the RFID map. The re-
turn value is the state estimate x̂k for the actual time step.
Hl = ∂h

∂x (x̃l, ti,0), Φl =
∂f
∂x (x̃l,ul,0).

The QEFIR estimator needs N past measurements for esti-
mating a pose x̂k. We bootstrap the QEFIR estimator with
the Full-Horizon EFIR algorithm until the optimal horizon
is reached (see [1]). Another option is the use of the QEKF
estimator for bootstrapping the QEFIR algorithm.

Algorithm 3 Quantized EFIR Filter
1: function QEFIR(xs,y,u,map)
2: s = k − N − 1;Gs = I , x̃s = xs

3: for l = s + 1 : k do
4: x̃−l = f (x̃l−1,ul,0) . prediction
5: Ti = yl . RFID reader measurement
6: if Ti then . Tag detected
7: ti = pos(map,Ti) . position of tag in map
8: z̃i = h(x̃−l , ti,0) . pos. in antenna frame
9: if z̃i ∈ A then

10: ∆y = 0 . no innovation
11: else
12: ∆y = µ − z̃i . innovation
13: end if
14: Gl =

(
HT

l Hl + (ΦlGl−1Φ
T
l )−1

)−1

15: x̃l = x̃−l +GlH
T
l ∆y

16: else
17: x̃l = x̃−l . no measurement
18: end if
19: end for
20: return x̂k = x̃l . state estimate at time step k
21: end function

5 Experimental Setup

5.1 NaviFloor®

The NaviFloor® is a glass fiber reinforcement in which
passive HF RFID tags are embedded. The NaviFloor® un-
derlay is shipped in rolls including a map of the RFID tags
for simplification of the installation [18]. The NaviFloor®

is specially developed for installation beneath artificial
flooring. It is pressure-resistant up to 45 N/mm2 and with-
stands even heavy indoor vehicles like fork lift trucks.
We have installed a NaviFloor® in our robotics lab. Fig-
ure 1 shows a picture taken during the installation proce-
dure. The RFID tags are installed in a grid of 250 mm.
The whole installation includes nearly thousand RFID tags.
The tags embedded in the NaviFloor® have a rectangular
shape 45 mm × 45 mm. NXP chips I-CODE SLI are inte-
grated in the tags. The tags are compliant to ISO 15693
and communicate in the 13.56 MHz HF band.

5.2 RFID Reader
The reader is a “KTS SRR1356 ShortRange HF Reader”
with an external antenna with the rectangular shape 80 mm
× 80 mm. We have mounted the reader antenna at a dis-
tance of 15 mm to the floor. At this distance, the detec-
tion area of the reader has a circular shape with a radius of
R = 100 mm. For this shape, the first and second moment
of p(zi|zi ∈ A) can be calculated as below:

µ = E(zi|zi ∈ A) =

(
0
0

)
, Σ = cov(zi|zi ∈ A) =

(R2

4 0
0 R2

4

)
.

The RFID tags in the floor are placed in a regular grid of
250 mm. Thus, at most one RFID tag can be detected at
any moment. The reader antenna is mounted in the center
of the vehicles frame.
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5.3 Omnidirectional Mobile Robot
This section summarizes the probabilistic motion model
of a Mecanum wheeled mobile robot we have developed
in [6, 19, 20]. An omnidirectional mobile robot is able to
move in any direction and to rotate around its z-axis at the
same time. Our mobile robot is equipped with Mecanum

Figure 3 Omnidirectional mobile robots with Mecanum
wheels

wheels, which provide three degrees of freedom. Examples
of Mecanum wheeled mobile robots in our lab are shown
in Figure 3. The movements of a mobile robot are cor-
rupted by disturbances caused by mechanical inaccuracies
such as unequal floor contact, wheel slippage and inaccura-
cies in the speed control of the wheels that lead to coupling
errors (see [21]). This disturbances will be treated as pro-
cess noise. Experiments with an omnidirectional mobile
robot show that the noise is mainly caused by slippage of
the Mecanum wheels. Since the slippage of the wheels de-
pends on the rotational speed of the free spinning rollers,
the uncertainty depends on the direction of the movement
in the robot frame. Therefore, it is assumed that the move-
ments of the mobile robot in the robot frame are corrupted
by independent noise εi:

∆x̂R = ∆xR + εx , ∆ŷR = ∆yR + εy , ∆θ̂R = ∆θR + εθ (4)

Furthermore it is assumed, that the noise εi is normally dis-
tributed with zero mean εi ∼ N(0, σ2

i ). The standard de-
viation σi is proportional to the displacement in the robot
frame and changes in the coupling error ∆ϕe (see [21]):σx

σy

σθ

 =

α
x
x α

y
x αθx αe

x
αx

y α
y
y αθy αe

y
αx
θ α

y
θ αθθ αe

θ

 ·

∆xR
∆yR
∆θR
∆ϕe

 (5)

The parameters α j
i are robot-specific constants, which can

be identified by experiments. With the additional noise, the
motion model can be described as follows:

xk = f (xk−1,uk,wk), with xk =

xk

yk

θk

 , (6)

uk =


∆xR
∆yR
∆θR
∆ϕe

 , wk =

εx

εy

εθ



where uk is obtained by odometry using wheel encoder
measurements (see [6]).

xk = xk−1 + (∆xR + εx) cos
(
θk−1 +

∆θ+εθ
2

)
−(∆yR + εy) sin

(
θk−1 +

∆θ+εθ
2

)
yk = yk−1 + (∆xR + εx) sin

(
θk−1 +

∆θ+εθ
2

)
+(∆yR + εy) cos

(
θk−1 +

∆θ+εθ
2

)
θk = θk−1 + ∆θ + εθ

(7)

In the prediction step of the EKF, the estimated pose of the
robot

x̂k = f (x̂k−1,uk,0) (8)

and the covariance of the pose

Pk = ΦkPk−1Φ
T
k +WkQkW

T
k , (9)

can be calculated based on f (·) and its Jacobians Φk and
Wk:

Φk =
∂f

∂x
(x̂k,uk,0) and Wk =

∂f

∂w
(x̂k,uk,0) (10)

The process covariance matrix

Qk =

σ
2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (11)

can be calculated using (5).

6 Experimental Results

We have conducted several experiments with an omnidi-
rectional mobile robot over an array of floor installed HF
RFID tags [7]. The measurements of the RFID reader and
the wheel encoders are stored in a file and evaluated off-
line with Matlab.
Figure 4 shows the estimated trajectories of one of these
experiments. The mobile robot moves a square path clock-
wise from the starting point at the left side of the figure to
the end point in the lower left corner. The path is transverse
to the grid with an angle of 5°. Global localization of the
mobile robot is realized as we have proposed in [7].
In Figure 4, RFID tags that are detected by the reader are
shown as black circles. Since the antenna in mounted in
the center of the robot frame and the shape of the detection
area is circular, the printed circles are the projection of the
detection area onto the working plane.
The pose estimation is started right after the second RFID
tag is detected (x = 2000 mm, y = 5750 mm). Due to the
quantized measurements, the localization error is large at
the beginning of the path and becomes smaller while mov-
ing. Hence, after global localization, the estimated heading
is parallel to the grid (θ̂ = 90°). After detecting additional
tags, all filters correct the estimated heading and therefore
the direction of movement. The magenta curve in Figure 4
shows, that the MCPF needs the least way length to cor-
rect the misalignment. The Quantized EKF (QEKF, green
curve) tend to force the position estimate into direction of
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the center of detected tags. The Quantized EFIR (QEFIR,
blue curve) is able to follow the real path with a smaller
deviation than the QEKF.
Figure 5 compares the Cumulative Distribution Function
(CDF) of the pose estimators for this experiment. The fig-
ure shows that the application of the QEFIR leads to a sim-
ilar localization performance than the MCPF and a better
performance than the QEKF. Compared to the QEKF, the
QEFIR needs more computations for every time step and
is able to run in real-time on fast computers only. The
MCPF needs even more computations and is not able to
run in real-time and serves as a benchmark only. The loca-
tion performance of the compared estimators depends on
the trajectory and is different for each experiment, which
we have evaluated. Normally, the location accuracy of the
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Figure 6 Optimal horizon of QEFIR filtering

QEFIR estimator is similar or better than the QEKF algo-
rithm, but there are also a few cases, where the accuracy of
the QEFIR is lower than the accuracy of the QEKF.
Figure 6 compares the localization accuracy of the QEFIR
algorithm for different horizons Nopt. The optimal horizon
is found at Nopt ≈ 200 experimentally with the trajectory
shown in Figure 4. A smaller as well as a larger horizon
decreases the localization accuracy. The computational ex-
panse increases linearly with the horizon.

7 Conclusions

In this paper, we have presented a novel localization algo-
rithm based on the EFIR algorithm that fuses sensory data
from wheel encoders with RFID readings. The RFID read-
ings are assumed as quantized measurement of the robot’s
position. This assumption considers the binary nature of
floor-installed HF RFID tags. In many cases, the localiza-
tion accuracy of the Quantized EFIR algorithm is similar
to the MCPF but with much less computational expense.
The QEFIR estimator outperforms the QEKF algorithm, if
the horizon of measurements is optimal. Compared to the
QEKF, the QEFIR needs more computations for every time
step and is able to run in real-time on fast computers only.
The accuracy of the localization method is sufficient for
most industrial applications.
The localization concept is suitable for small and inexpen-
sive mobile robots, since the robots must be equipped with
an inexpensive and small HF RFID reader only. Compared
to localization using laser range finders as position sensor,
a HF RFID reader is much cheaper. Compared to localiza-
tion using optical or inductive guidance, localization using
a grid of floor-installed tags is more flexible. The installa-
tion of the RFID infrastructure causes the highest expense
for this localization method, but since passive RFID tech-
nology is used, the infrastructure is free of maintenance
costs.
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