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Abstract

Ultra-wideband (UWB) offers global positioning in various, mostly indoor scenarios, whereby the localization can be
performed by the device itself. The usual accuracy of its proximity detection under good conditions is±10 cm. However,
this accuracy can be strongly influenced by environmental influences resulting in highly inaccurate and unsatisfactory
position estimation. This paper introduces a method utilizing artificial neural networks (ANNs) to mitigate errors by
detecting non-line-of-sight (NLOS) conditions and correcting measured distances. Two ANNs are created, which are
capable to exploit information using both the additional metrics such as the channel impulse response (CIR) provided by
the Decawave DW1000 UWB radio chip.

1 Introduction

1.1 Motivation
UWB is a popular technology for wireless localization in
various, primary indoor scenarios where position of mo-
bile robots or systems must be determined by the device it-
self. Compared to other localization technologies, like e.g.
laser scanners, UWB based localization tends to be less
expensive whilst also offering global positioning. Under
usual line-of-sight (LOS) conditions, UWB offers a prox-
imity detection to an accuracy of ±10 cm using two-way
ranging time-of-flight (TOF) measurements [1]. However,
the general localization accuracy is highly dependent on
the environment and environmental influences. Ranging
errors can be caused by refractions, reflections, multipath
effects, blockings in signal path and the general complex-
ity of the indoor radio environment. Leading to a posi-
tive bias in the ranging measurement, those errors can eas-
ily result in inaccurate and unsatisfactory position estima-
tion. There are several approaches on ranging error mitiga-
tion with conventional methods [2][3]. Recent publications
show that exploiting of ANNs is a promising solution to
solve these problems in a more effective and efficient way
[4][5][6][7][8][9].

1.2 Related Work
Following recent work and literature, the solving strategy
for UWB ranging errors can be coarsely broken up into two
steps [10]: (1) A process in which is decided if a ranging
classifies as either LOS or NLOS or multi path (MP) as
a third class. Followed by a (2) mitigation procedure, in
which a bias is applied to correct the ranging in some way.
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Depending on the algorithm used for position estimation
(e.g. a Kalman filter), rangings which previously have been
identified as NLOS have to be either discarded or also be-
ing corrected during this process. Commercial UWB radio
IC’s like the Decawave DW1000 provide additional values
and ranging metrics stored in externally accessible regis-
ters for each measurement. Once, there is a channel im-
pulse response (CIR) register containing 1016 values con-
sisting out of a 16-bit real and a 16-bit imaginary part. Fur-
thermore, there are single value registers with metrics such
as registers containing on-chip calculated metrics based on
the CIR. In [4] an approach is described using machine
learning (ML) to exploit the mentioned single value regis-
ters and on-chip metrics to predict whether a ranging is ei-
ther LOS, NLOS or MP. Other work [5] uses the same reg-
isters, but to predict individual biases for error mitigation.
Limiting to the single value registers and on-chip metrics
as only input to an ML-algorithm has the advantage, that
only a few bytes need to be fetched from the UWB radio
IC, but also more detailed information is missed out there-
fore. The CIR has a size of 4046 bytes in total, to reduce
the amount of transmitted data, algorithms such as the fol-
lowing only use a partial cut-out of the CIR. To classify if a
ranging is a LOS or NLOS condition [6][7] uses only 120
values from CIR. The same applies to the approaches [8][9]
where maximum cutout-sizes of 128 respectively 160 are
fed into neural networks used to mitigate ranging errors.

1.3 Approach
This paper introduces an approach featuring two ANNs
which could be used to mitigate ranging errors when us-
ing UWB for real time self localization. Both ANNs share
are a nearly identical architecture, but each network model
takes on a different task. The first model predicts whether
a ranging classifies as a LOS or NLOS condition. The sec-
ond is used to compensate the remaining error in all rang-
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ings identified as LOS. The models utilize both the chip’s
provided single value registers and on-chip metrics as also
the CIR by featuring an input divided into two branches.
Other work has shown that UWB rangings have specific a
bias correlating with the distance [2][11]. Further, as men-
tioned in the previous section, there are approaches using
either only the on-chip metrics or only the CIR. For this
reason, it is obvious to examine if further potential can be
exploited by utilizing both data in combination.

2 Dataset construction

2.1 Data collection procedure
Data collection was performed through two different ap-
proaches, in a manner hereinafter referred to as static and
dynamic. The anchors and tag used in the data collection
process were MDEK1001 boards, featuring a Decawave
DW1000 UWB radio chip. Overall 5 individual anchors
(referred to as A1-A5) and one tag (T1) were used. To
compensate warm-up-drift, the whole system was allowed
to acclimate first and afterwards dry-runned for 15 minutes,
until measurements were taken.
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Figure 1 Schematic overview of the mounting positions
of the UWB Tag (T1) on the AGV (dynamic) and the pole
stand (static data collection approach).

For the static approach, the UWB tag (T1) and anchor (A5)
were both mounted each on a metal pole stand, as schemat-
ically shown in the right part of Fig. 1. For the dynamic
approach, the T1 was mounted on an AGV (see Fig. 1, left)
and anchors A1-A4 were placed with 45-degree arrange-
ment in the room corners (see Fig. 3). For ground truth
reference, the real distances between anchors and tag were
determined with either a tape measure (static approach) or
a 3D tracking system (Vicon). In case of the static ap-
proach, 5 scenarios with various ambient conditions were
created in total (see Tab. 1). In all scenarios, the distance
between A5 and T1 was increased in either 0.5 or 1.0 m
increments by moving A5 while T1 remained on a static
position all time. On each increment, 100 measurements
were triggered under LOS and NLOS condition each. Ex-
cept for the datasets "Office" and "Lab.", the measurements
were carried out over a distance range of 0.5 to 26.0 meters.
To provoke a NLOS condition, a solid 3 mm thick metal
plate was placed with an approx. spacing of 40 cm in front
of T1. Note that some sceanrios feature additional mea-
surements for LOS respectively no NLOS measurements at
all. Furthermore, in some cases the data received from the
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Figure 2 Static approach: images from three experimen-
tal setups.
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Figure 3 Plot of all ground truth positions in the "Lab."
room on which a measurement to one of the anchors (A1-
A4) was initiated by T1. Ground truth was determined via
Vicon.

MDEK1001 was fragmented, those measurements were
dropped. This results in the smaller number of samples
ultimately collected, compared to the number that would
have to result from the calculation. In total 24,849 samples
were recorded whereby 14,652 are LOS and 10,197 are
NLOS. Figure 2 shows images of some static scenario se-
tups. For gathering dynamic data, the AGV autonomously
followed various courses but was also driven manual. All
rides were carried out in a mostly empty room ("Lab") with
a size of 4.71 by 12.02 m. In Fig. 3, all ground truth
positions, on which a measurement to one of the anchors
(A1-A4) was initiated by T1, are plotted. To provoke a
NLOS condition, during some measurements one of each
anchor was shielded with the mentioned metal plate. In to-
tal 15,866 samples were recorded whereby 14,754 are LOS
and 1,112 are NLOS (see Tab. 2).
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Std. MAE Min. Max.
Free field
L: 2,574
N: 2,574

L 5.11 26.81 5.6 40.13
N 5.85 39.34 19.87 65.10
A 8.33 33.07 5.6 65.10

Parking lot
L: 2,574
N: 2,574

L 8.92 28.67 6.94 110.29
N 18.72 49.70 13.88 183.45
A 18.04 39.18 6.94 110.29

Corridor
L: 7,722
N: 5,049

L 14.38 38.47 -4.15 122.77
N 26.73 64.01 9.44 181.04
A 23.74 48.57 -4.15 181.94

Office
L: 693

L 8.88 44.17 24.97 96.44

Lab.
L: 1,089

L 5.88 36.29 13.79 51.68

Table 1 Static scenario: statistics for uncalibrated dis-
tance errors (cm) (total number of samples per class, stan-
dard deviation, mean absolute error (MAE), minimum,
maximum) for measured UWB distances (T1 to A5). L =
LOS, N = NLOS, A = All (LOS ∪ NLOS).

Std. MAE Min. Max.
A1
L: 3,689
N: 285

L 13.21 34.17 -19.55 121.05
N 21.92 64.88 24.37 128.96
A 16.11 36.38 -19.55 128.69

A2
L: 3,691
N: 275

L 10.42 27.28 -22.44 146.56
N 18.00 68.98 32.05 136.54
A 15.37 30.17 -22.44 146.56

A2
L: 3,684
N: 283

L 16.96 37.75 -2.71 132.68
N 19.17 60.02 17.19 145.65
A 18.06 39.34 -2.71 145.65

A4
L: 3,690
N: 269

L 11.69 29.93 -48.47 110.20
N 22.23 61.15 22.01 136.76
A 14.92 32.05 -48.47 136.76

Table 2 Dynamic scenario: statistics for uncalibrated
distance errors (cm) for measured UWB distances of T1
to A1-A4. All measurements were performed in room
"Lab." of Fig. 3

2.2 Data structure
The used DW1000 chip offers several single value and on-
chip metrics such as the CIR register, which contains 1016
sample values, consisting out of a 16-bit real and a 16-
bit imaginary part each (4064 bytes in total). In Tab. 3
an overview is given about all the chip’s provided values
that were captured with each measurement. To reduce the
amount of transferred data, the CIR was cropped to retain
128 samples only, starting with an offset of −20 samples
relative to the first path index (FP index) (see Fig. 4). In
terms of the radio signal’s TOF, one CIR sample equals
1 nanosecond or 30 cm [1]. Note that the 16-bit on-chip
value of the FP index is divided into a 10-bit whole part
(most significant bits) and a 6-bit fractional part. The frac-
tional part can be used to determine a more accurate posi-
tion of the FP index in between two CIR samples. In this
case the 6-bit fractional part was only used to round up or
down the reported 10-bit coarse position. Additionally, it
should be noted that the resolution of distance reported by
the chip is 1.8761 cm.

Bits Values Type
Distance (m) 64 1 Double
FP Index 16 1 unsigned Integer
FP Amp 1 16 1 unsigned Integer
FP Amp 2 16 1 unsigned Integer
FP Amp 3 16 1 unsigned Integer
Max Grow CIR 16 1 unsigned Integer
Max Noise 16 1 unsigned Integer
RX Pre Count 16 1 unsigned Integer
Std Noise 16 1 unsigned Integer
CIR real 16 128 Integer
CIR imaginary 16 128 Integer
Total Bytes 534

Table 3 Structure of the data captured from the DW1000
with each UWB measurement.

The plots of absolute values from the CIR shown in Fig.
4, already indicate a trend that there are differences in the
CIR under LOS and NLOS conditions. Under LOS condi-
tions, measurements seem to share a similar waveform, and
their highest peak mostly seems to begin at the reported FP
index. In the NLOS case, the signal travels along many
routes until it reaches the antenna which makes the TOA
estimation ambiguous.
The selected crop size of the CIR seems to be sufficient,
since the signal has mostly decayed by the end of the sec-
tion. At the time the firmware was developed, it was not
known to what extent signal peaks may occur ahead of the
FP index. Hence, the offset was chosen that large. Since
there are no outliers larger than −7 across all measure-
ments at all, the offset may be reduced in future work. The
reduction can be either used to reduce the total number of
transmitted samples or to include more samples after the
FP index while keeping the same crop size.

NLOS
LOSFP Index CIR at 7 m

NLOS
LOSFP Index CIR at 2 m

Figure 4 Plot of absolute (raw, non normalized) values
from the CIR under LOS and NLOS conditions from the
"Corridor" dataset at a static 2 and 7 m distance. Both
plots unify 10 CIR’s each per LOS and NLOS condition.
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2.3 Dataset creation
Based on the collected data, two datasets for training and
testing the networks were created. Both datasets contain
data from static such as dynamic measurements; the exact
composition is shown in Tab. 5. The static part of the
training-set includes all measurements from the "Parking
lot" and "Corridor" datasets. The dynamic part contains
12,632 measurements from some autonomous, such as all
manual driven courses of the AGV. The test-set’s dynamic
and static portion consist out of all the remaining dynamic
data, that was not used for the training-set.
To prepare the data for use with machine learning, all val-
ues are normalized to a value range between 0 and 1. Re-
garding the real and imaginary values from the CIR reg-
ister, which also contain negative values, the values have
been scaled and shifted in a way so that 0=̂0.5. Further-
more, all distance measurements from anchors (A1-A5)
were corrected with an individual static offset value (bias)
(see Tab. 4) so that their distance error becomes more uni-
form.

A1 A2 A3 A4 A5
−31.9 −25.0 −33.0 −27.7 −33.5

Table 4 Static calibration offset values (bias) in cm that
was applied for each anchor.

LOS NLOS ALL
TRAIN
Dynamic 12,072 560 12,632
Static 10,296 7,623 17,919
All 73.2% / 22,368 26.8% / 8,183 30,551

TEST
Dynamic 2,682 552 3,234
Lab. 1,089 - 1,089
Office 693 - 693
Free field 2,574 2,574 5,148
All 69.2% / 7,038 30.8% / 3,126 10,164

Table 5 Composition of the number of measurement
samples per dataset.

3 Approach

3.1 Network design
In Fig. 5 an overview of the overall network architecture
is presented. Note that two separate networks where cre-
ated. Apart from the output layer, both networks share an
identical architecture featuring an input consisting out of
two separate branches: (1) a 2× 128 sized matrix such as
(2) a one-dimensional input field of 9 values. The input
branch (1) is used to process the real and imaginary values
and consists out of one 2D convolutional and two 1D con-
secutive convolutional layers followed by a fully connected
stage. By using a 2D convolution in the first layer, it is in-
tended to keep a correlation between real imaginary part of
the values from the CIR. With each progression in the con-
volutional layer depth, the number of filters (f) is rose from

24 to 48, the kernel size (k) is decreased from 2× 10 to 3
and the stride (s) increased from 1 to 2. Input branch (2)
is used to process the mentioned on-chip metric provided
values and is built out of four decreasing consecutive fully
connected layers. Both branches result in an output of 8
features each, which are concatenated and fed into a last
fully connected stage of two layers. All layers, except for
the output layer, use a Leaky-ReLu activation function with
α = 0.1. The output (c) of the first network, used for clas-
sification, consists out of two neurons and uses a softmax
activation function, and no bias is applied. Output (r) of the
second network used for error mitigation, is a single value
and has no activation function (linear), but uses a static bias
of −0.2. The first network is trained to perform a binary
classification to identify whether a UWB ranging is a LOS
or NLOS condition. Each output holds a predicted prob-
ability for its corresponding class. This computed proba-
bility may be used to compute a covariance to input into a
Kalman filter. Mainly it is used to filter out all measure-
ments which are classified as NLOS at the moment. All
LOS measurements are further processed with the second
network, which is trained to predict a value, representing
the ranging error (regression). The predicted ranging error
is then subtracted from the UWB distance.
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Figure 5 Architectural overview of the neural network
model. Rounded rectangles represent fully-connected
layers. The classification model has 91,290, the regression
model 91,276 (trainable) parameters in total.
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3.2 Training
The Adam optimization algorithm [12] is employed for
training of both networks. The momentum parameters are
set as β1 = 0.9, β2 = 0.999, and ε = 10−8. The networks
are trained separately with the three datasets from Tab. 5
("Dynamic", "Static" or "All").

3.2.1 NLOS detection (classification)
In case of training the classification network, the learning
rate is set to 0.001 and is kept constant for 20 epochs with a
batch size of 128 using the sparse categorical crossentropy
loss function.
For the training-set such as the test-set, the whole data is
shuffled and the occurrences of LOS and NLOS samples
are equalized. As the number of occurring NLOS samples
in the datasets is lower than that of the LOS, especially in
the dynamic case, the total number of samples usable for
training is reduced drastically. In the dynamic part of the
training-set, for example, the number of NLOS samples
is 560. To reach a balanced distribution, only 560 LOS
samples are kept, while the remaining have to be discarded,
resulting in a training-set of only 1120 samples in total.

3.2.2 Error mitigation (regression)
The regression model is trained for overall 40 epochs. The
learning rate is 0.001 for 20 epochs and then reduced to
0.0001 for another 20 epochs. As loss function the mean
squared error (MSE) is applied.
Due to the used Leaky-ReLu activation function, the net-
work tends to eliminate or at least distort values below
zero. Therefore, the preferred scale for the network’s out-
put value should be in the 0 to 1 range. To get the ranging
error as a label, the ground truth distance is subtracted from
the raw UWB distance. Following Tab. 1 and 2, except for
some outliers, the majority of errors is located in the cm
range. Furthermore, errors in the raw UWB distance tend
to have a mostly positive bias when compared to the ground
truth. Since ground truth and raw UWB distance are given
in meter (m), this will (mostly) result in the preferred scale.
Due to the previously applied offset calibration (see Tab.
4) in some cases negative correctional biases appear. To
finally facilitate the output of also negative values by the
network, the output layer is provided with the previously
mentioned static bias of −0.2. Since NLOS measurements
are intended to be identified and filtered out utilizing the
classification network as a previous stage, all NLOS data
is excluded from the training and test datasets.

3.3 Experimental results
3.3.1 Performance evaluation
Figure 6 shows the confusion matrices for the classifica-
tion model when trained with data from the training-set
in three different combinations. Each separately trained
model performs classification on three different test-set
combinations. Note that the datasets "Lab" and "Office"
(see Tab. 5) are left out as they do not contain any NLOS
samples; the "All" dataset therefore only includes data
from "Dynamic" and "Free Field" in this case.
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Figure 6 Cross-validation results for LOS / NLOS classi-
fication results on different test-sets.

As to be expected, the network trained with data from one
specific domain (dynamic or static) performs best when
tested on data similar to the data it was trained with.
Whereby the network trained on static data only, tends
to have better performance overall compared to the one
trained with dynamic data. However, this must be put into
perspective, considering that the size of the training set
containing dynamic data is only 7.3% the size of the static.
The same applies to the test-set, whereby it corresponds to
21.4% in this case. Furthermore, it has to be noted that
the portion of data included from the dynamic dataset is
larger in the "All" dataset. As mentioned in previous sec-
tion 3.2.1, both datasets are merged and equalization takes
place only afterwards by picking samples randomly until
an equal distribution is reached. Thus explaining the nearly
50/50 classification on the "All" dataset, when the network
is trained with the "Dynamic" data only (top right corner in
Fig. 6).
In Tab. 6 the results of the range error mitigation model
are shown. The three individually trained models are eval-
uated on the four single test-sets such as the overall dataset
combining all the first three datasets from indoor envi-
ronments. In general, the model trained on dynamic data
only, seems to outperform the model trained with just the
static data - in this case, the dynamic and the static datasets
share a more similar sizing and therefore better compara-
bility. Even compared to the model trained on all data, the
first model achieves a better performance. It is able to re-
duce the standard deviation such as the mean absolute error
(MAE) on all datasets, except for "Lab" and "Free Field",
but also reaches the best performance on "All". However, it
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has to be taken into account that the amount of static mea-
surement data from the "Lab" and "Office" datasets have a
smaller share in the "All" dataset. Furthermore, the static
portion of data in the training-set originates from scenar-
ios with very specific environmental conditions: a narrow,
long corridor and a concrete parking lot without delimita-
tion by walls. When considering standard deviation only,
the model trained on the "All" dataset has the (almost) rel-
atively lowest values on all five test-set’s, compared to the
two other models. Overall, however, it also tends to a de-
terioration on datasets "Lab" and "Free Field" compared to
raw UWB.

Dyn. Lab. Office All
Free
Field

UWB S 14.10 5.88 8.88 12.17 5.11
M 8.54 5.40 11.36 8.21 6.84

Dyn. S 11.92 7.16 8.16 10.89 10.18
M 6.88 6.32 8.24 6.69 16.27

Stat. S 14.10 5.65 11.74 12.83 9.49
M 11.57 11.31 21.9 13.11 13.14

All S 11.77 6.75 7.4 10.91 9.07
M 6.96 7.06 11.96 7.75 13.10

Table 6 UWB errors (cm) on different test-datasets
(columns) corrected with the error mitigation model
trained on various train-datasets (rows). Top row shows
the uncorrected but already calibrated statistical values for
each test dataset. Improvements are highlighted in bold.
(S = Std., M = MAE)

3.3.2 Inference Benchmark
Most mobile robots or systems are endowed with comput-
ing units utilizing Linux-capable Arm Cortex-A CPUs. A
widely used computing unit for this purpose is the Rasp-
berry Pi. To determine the performance of the network
models on such a unit, an inference benchmark was per-
formed. The benchmark took place on a Raspberry Pi
4 with a Cortex-A72 (ARM v8), 4GB RAM and Ubuntu
20.04.4 LTS (64 bit). The models were deployed using the
TensorFlow-Lite1 2.5.0 framework with Python 3.9. The
model was executed for 1000 iterations in a row. To mea-
sure the execution time of only the model itself, a static
set of dummy input parameters was used, and the model’s
output was fetched and written to a variable. As expected,
both model’s performance is very similar. An iteration with
the classification network took on average 0.2290 ms, for
the regression network it took 0.2295 ms. This results in a
maximum execution performance of 4,367.57 respectively
4,357.22 inferences per second. This should leave enough
computational headroom for further processing of the net-
works output as well as for other tasks. By reducing the
model size, also the use on microcontrollers is conceivable.
To show potential feasibility two dummy models were cre-
ated, consisting of only five fully connected layers with
15,106 (trainable) parameters each. Both models were con-
secutively executed on an ESP32 (240MHz, 320KB RAM,
4MB Flash) microcontroller for multiple times, whereby it
took 1.43 ms to execute both models on average.

1https://www.tensorflow.org/lite

4 Conclusion and future outlook

The presented experimental results suggest that UWB
ranging errors can be mitigated by using the approach in-
troduced in this paper. At the moment, however, the cre-
ated network models seem to be environmental dependent
and not universally applicable. Further experiments, which
could not be included in this paper due to time constraints,
such as other work [9] shows that models can be capable
of universal generalization at least for indoor scenarios.
By extension of the data in the training-set, tweaking in
the model’s architecture such as the training process (e.g.
by utilizing data augmentation), further potential may be
exploited. In particular, the combined use of both the on-
chip metrics such as CIR values is, according to our current
knowledge, used only in the proposed approach so far.
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