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Abstract Sinusoidal commutation of phase currents leads to force ripple, if motor back-EMFs differ from ideal case.
Force ripple reduces the tracking performance significantly, if no compensation methods are applied. To overcome
force ripple, optimal commutation of phase currents is proposed. Optimal commutated currents generate smooth force
and produce minimal winding losses and therefore maximize motor efficiency. The optimal commutation law depends
on the force functions produced by the phase currents. This paper presents a method for identification of non-parametric
force functions of servo systems with linear motors. In this research, synchronous motors with surface-mounted mag-
nets and three-phase star wiring are considered.
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1. Introduction

Permanent magnet (PM) linear synchronous motors (LSM)
are mainly used in applications which require high speed and
high precision in positioning such as semiconductor manu-
facturing or laser cutting. The more predominant nonlinear
effects underlying a PM LSM system are friction and force
ripple arising from imperfections in the underlying compo-
nents (1). There are two types of position dependent distur-
bances: cogging force and force ripple. Force ripple is an
electro-magnetic effect and causes a periodic variation of the
force constant. Only if the back-EMF waveforms are sinus-
oidal and balanced, symmetric sinusoidal commutation of the
phase currents produces smooth force. Cogging force is a
disturbance force that is independent of the motor currents.

In order to avoid force ripple, different methods have been
developed. In (2) several techniques of torque ripple mini-
mization for rotating motors are reviewed. In (3) a force rip-
ple model is developed and identification is carried out with
a force sensor and a frictionless air bearing support of the
motor carriage. In (4) a neuronal-network based feedforward
controller is proposed to reduce the effect of force ripple.
Position-triggered repetitive control is presented in (5).

In (6), a force ripple compensation method for PM LSM sys-
tems with electronic commutated servo amplifiers was pre-
sented. The proposed method applies a feedforward con-
troller for compensation of force ripple and friction. The
drawback of controller-based compensation methods in con-
junction with electronic sensor-based commutation is the non
optimal current excitation of the motor. Imperfect commu-
tation of the phase currents produces additional heat in the
phase windings and therefore reduces the motor efficiency.

In (7), the author has presented a force ripple compensation
method for software commutated servo amplifiers. The addi-
tional input signal of a software commutated amplifier is used
to optimize the operation of the motor. In that paper a method
for design of the phase current commands for minimization
of force ripple and maximization of motor efficiency is pre-

sented. The commutation of the phase currents is optimized
in order to get smooth force and minimal winding losses. The
optimal commutation law depends on the force functions pro-
duced by the phases.

In section 4 of this paper, a method for identification of
the force functions is presented. In section 2 a model of PM
LSMs is developed and in section 3 the optimal commutation
law is presented.

2. Modeling of Three-Phase Servo Systems

In this section a model of force generation for PM LSMs is
developed. The electromagnetic thrust force is produced by
the interaction between the PMs and the magnetic field in the
windings driven by the phase currents of a servo amplifier. In
PM LSMs, three different types of forces exists:
• Cogging force: Cogging is a magnetic disturbance force

that is caused by attraction between the PMs and the
iron part of the primary. The force depends on the rela-
tive position of the primary with respect to the magnets,
and it is independent of the motor current. The mean
value of cogging is zero. Cogging is negligible in mo-
tors with iron-less primaries or slotless motor design. If
cogging is significant, a position dependent signal has
to be added to the force command to overcome the cog-
ging force. This can be made for example by means of
feedforward control (4).

• Reluctance fore: Reluctance force occurs only in motors
with interior-mounted PMs. In this type of motor, the re-
luctance of the motor is a function of position. The self
inductance of the phase windings varies with position of
the primary with respect to the secondary. When current
flows, this causes a position dependent force. If PMs are
surface-mounted, reluctance is constant and reluctance
force is negligible. In this work reluctance force will not
be considered.

• Excitation fore: Excitation force is produced by the in-
teraction between the magnetic field in the secondary
and the magnetic field of the phase windings. In Surface-
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mounted PM motors, this is the dominant force produc-
tion mechanism. In this paper only this type of force is
considered.

Excitation force is proportional to the magnetic field and
the phase currents iA, iB , iC . The back-EMF induced in a
phase winding (eA, eB , eC) is proportional to the magnetic
field and the speed of the motor. The total thrust force Fthrust

is the sum of the forces produced by all phases:

ẋ Fthrust =
∑

p

ep(x) ip , p ∈ {A,B,C}. (1)

The speed-normalized back-EMF waveforms ep(x)
ẋ can also

be interpreted as the force functions of the phases (KMp
(x)).

With this force functions the thrust force can be rewritten as:

Fthrust =
∑

p

KMp
(x) ip , p ∈ {A,B,C}. (2)

Only if the force functions are sinusoidal and balanced, sym-
metric sinusoidal commutation of the phase currents pro-
duces smooth force. Force ripple occurs, if the motor current
is different from zero, and its absolute value depends on the
required thrust force and the relative position of the primary
with respect to the secondary. There are several sources of
force ripple in motor and amplifier. Due to production tol-
erances, phase and amplitude of back-EMFs may be imbal-
anced. Furthermore the shape of back-EMFs may differ from
ideal sinusoidal shape, due to motor design. Since an ampli-
fier drives the phase currents, it may also be a source of force
ripple. Production tolerances of the amplifier may lead to
offset currents, imbalance of current gains and measurement
gains.

Inspection of (2) shows, that offset currents lead to force
ripple with the same period as the force functions. This force
ripple is independent of the desired thrust force. Amplitude
or phase imbalance of the motor and imbalance of amplifier
gains lead to force ripple with half commutation period which
scale in direct proportion to the desired thrust force. A kth or-
der harmonic of a back-EMF produces (k−1)th and (k+1)th

order harmonic force ripple, if a sinusoidal current is applied.
Force ripple with the same period as the commutation pe-

riod is independent of the desired current, all higher order
harmonics scale in direct proportion to the desired current,
because of the linearity of the force equation (2).

The star connection is the most common configuration in
three-phase motors. The three external lines of the star are
connected to a half bridge circuit. The collection of three
half bridges is called a three-phase bridge. Only six power
electronic devices are needed in a three-phase bridge, this is
minimal compared to any other number of phases. Only two
of the three phase currents are independent, the third phase
current depends on the others:

iC = −iA − iB . (3)

The phase currents are driven by a servo amplifier which
needs only two command signals for the three phases:

iA = KSA
uA , iB = KSB

uB , (4)
iC = −KSA

uA −KSB
uB ,

where uA and uB are the current commands and KSA
and

KSB
are the amplifier gains. The force equation can be writ-

ten as

Fthrust = KA(x) uA + KB(x) uB , (5)

where KA(x) and KB(x) are position dependent force func-
tions of the phases, which are given by

KA(x) = KSA
(KMA

−KMC
) and (6)

KB(x) = KSB
(KMB

−KMC
) .

In sinusoidal commutation, the current commands are func-
tions of the force command u and position x and are defined
by

uA(u, x) =
2
3

sin (ϑ(x)) u, (7)

uB(u, x) =
2
3

sin
(

ϑ(x)± 2 π

3

)
u,

with ϑ(x) =
π

τp
(x− x0)

where τp is the pole pitch and x0 is the zero position with
maximum force. The sign in sin

(
ϑ(x)± 2 π

3

)
depends on

the wirering of the motor. In case of sinusoidal commuta-
tion, the force equation can be rewritten as

Fthrust = KFsin
(x) u with (8)

KFsin
(x) =

2
3

(
sin (ϑ(x)) KA(x)+

sin
(

ϑ(x)± 2 π

3

)
KB(x)

)
.

Thrust force is only independent of position in the ideal case,
where the force functions KA(x) and KB(x) are balanced
sinusoids.

3. Optimal Commutation Law
Aim of optimal commutation is to obtain current com-

mands that generate a thrust force which depends only on
the force command and which is independent of the posi-
tion. Inspection of the force equation (5) reveals, that there
are an infinite number of combinations of current commands
that generate the desired force. Therefore a secondary con-
dition has to be applied. In this research, the ohmic winding
losses of the motor are minimized. In permanent magnet syn-
chronous motors, the winding losses are the main source of
power dissipation.

The problem is formulated as constrained optimization,
where the thrust force is the constraint and the losses are
minimized. In motors with star-connection the constraint is
represented by

Fthrust = KA(x) uA + KB(x) uB = KF u 6= f(x). (9)

where KF is a freely eligible constant and u is the force com-
mand. The winding losses are given by

Pcu(x) =
∑

p

Rp i2p(x) , p ∈ {A,B,C}, (10)

where Rp is the resistance of phase winding p. In assump-
tion of symmetric winding resistances RA = RB = RC and
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servo amplifier gains KSA
= KSB

, the functional to be min-
imized can be written as

f = u2
A + u2

B + uA uB . (11)

After substituting (9) in (11) the current commands can be
obtained by minimizing (11)

up =
∂f

∂up
= 0 , p ∈ {A,B}, (12)

as

uA(u, x) =
KA (x)− 1

2KB (x)
K2

A (x) + K2
B (x)−KA (x)KB (x)

KF u,

(13)

uB(u, x) =
KB (x)− 1

2KA (x)
K2

A (x) + K2
B (x)−KA (x)KB (x)

KF u

The current commands depend on the unknown force func-
tions KA(x) and KB(x) and on the force command u. The
next section describes how to identify the force functions in
case of nonidealities.

4. Identification of Force Functions

The method consist of two steps, in the first step, the force
function KFsin(x) for sinusoidal commutation is identified.
In the second step, the force functions for each current com-
mand is identified separately. Before identification can be
performed, possible offset currents have to be compensated
as described in (7).

4.1 Identification of KFsin
(x) The main idea of

the proposed method is to identify KFsin(x) in a closed posi-
tion control loop, by storing the force command, which is the
output of the position controller, at constant load force Fload,
as a function of position usin(x). In order to avoid inaccu-
racy by stiction, the measurement is achieved with moving
carriage. In the experimental setup, the constant load force
is produced by the force of gravitation. At constant loads,
the controller changes the force command over position in
order to compensate the variation of KFsin

(x). For constant
load forces and sinusoidal commutation the force equation is
given by

Fload = KFsin(x) usin(x). (14)

After measuring usin(x) at a given constant load force
Fload, KFsin(x) can be obtained as

KFsin(x) =
Fload

usin(x)
. (15)

The values of KFsin
(x) are stored at equidistant positions

for later use in identification of Kp.
4.2 Identification of Kp(x) The force functions

Kp(x) describes the force generated by the current command
up. In order to identify the force function Kp(x) an offset op

is added to the current command up. The proposed identifi-
cation procedure stores the force command uop

(x) over po-
sition at a given offset op and sinusoidal commutation. The
offset produces a force, that is proportional to the force func-
tion. The position controller changes the force command, to
compensate this additional force. The force function KA(x)

is identified by adding an offset oA to the current command
uA:

uA(u, x) =
2
3

sin (ϑ(x)) u + oA. (16)

Plugging (16) into (5) at sinusoidal commutation of the
other phases reveals

Fload = KFsin
(x) uoA

(x) + KA(x) oA. (17)

After subtracting (14) from (17) the force equation is ob-
tained as

KA(x) =
(uoA

(x)− usin(x)) KFsin
(x)

oA
. (18)

The force function KB(x) can be identified in the same
manner. The choice of the right value for op is important
for proper identification. If the value is to small, the noise
prevents sufficient identification. The operation of the motor
is disturbed, if the value is to high. Experiments show, that
values 5% . . . 10% of the peak command obtain good results.

5. Experimental Results
5.1 Identification of KFsin(x) Fig. 1 shows the

identified force function KFsin as a function of the position
x and the spectrum of KFsin

. The identification is performed
after offset compensation. The spectrum of KFsin

is cal-
culated with least square estimation as described in (7). The
fundamental is chosen as the commutation period (2 τp =
30 mm). The ripple has a maximum at the 2th order har-
monic.
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Fig. 1. Force function KF (x) with spectrum

5.2 Identification of KA and KB Fig. 2 shows the
identified force functions KA and KB . Identification is per-
formed with positive and negative values for oA and oB

(± 0.5 V). The mean values of the experiments are calcu-
lated in order to prevent inaccuracy by offsets. The curves
show, that there is an amplitude imbalance in the force func-
tions. The imbalance causes force ripple of the 2th order
harmonic as shown in Fig. 1. Fig. 3 shows the optimal cur-
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Fig. 2. Identified force functions
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Fig. 3. Optimal current commands for constant force

rent commands over position at a constant force command.
Fig. 4 shows KF at optimal commutation. The ripple on KF

is significantly reduced compared to sinusoidal commutation.
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Fig. 4. KF (x) at optimal commutation

6. Controller Design
Fig. 5 shows the block diagram of the servo control system.

In order to achieve a better tracking performance, a feedfor-
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Fig. 5. Controller design

ward controller is applied. The feedforward control compen-
sates the effect of the carriage mass and the friction force.
The friction force is modeled by a kinetic friction model and
identified with experiments at different velocities. The mass
of the carriage is identified with a dynamic least square algo-
rithm. If cogging force is significant the feedforward control
may add a position dependent signal to compensate this dis-
turbance force. The stability of the system is determined by
the feedback loop. Experiments show, that the tracking per-
formance is improved significantly, if the optimal commuta-
tion law is applied (7).

7. Conclusion
In this paper, the identification of force functions for an

optimal commutation law is presented. The optimal com-
mutation law guarantees smooth force and minimal winding
losses. It is valid for any velocity and any desired thrust
force and considers nonidealities of motor and amplifier. The
optimal commutation law is based on non-parametric force
function. The force functions are identified in a closed con-
trol loop, by measuring control signals over position at sinu-
soidal commutation. No assumptions of periodicity, symme-
try, shape or balance of the force functions are made. Exper-
iments are performed with an epoxy-core PM LSM, but the
results are also valid for rotating motors.
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