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Mobile Robot Localization using WLAN Signal Strengths
Christof Röhrig, and Frank Künemund

Abstract—Many buildings are already equipped with a WLAN
infrastructure, as an inexpensive communication technology. In
this paper two methods that estimate the position and the heading
(pose) of a mobile robot using WLAN technology are described.
The proposed techniques for localizing a mobile robot are based
on the use of received signal strength values of WLAN access
points in range. Both use a radio map based method. For
interpolation of the radio map weigthed Euclidean distance and
Euclidean distance in combination with Delaunay triangulation is
proposed. Measured signal strength values of an omnidirectional
antenna and a beam antenna are compared with the values of
a radio map, in order to estimate the pose of a mobile robot,
whereby the directionality of the beam antenna is used to estimate
the heading of the robot. The paper presents the experimental
results of measurements in an office building.

Index Terms—Mobile robots, global localization, pose estima-
tion, WLAN, received signal strength.

I. I
Navigation is a key ability of mobile robots. The task of

navigation can be divided into localization and path planning.
Aim of localization is to estimate the pose (position and head-
ing) of a mobile robot with respect to its environment. There
are three different kinds of localization problems in mobile
robotics: position tracking, global localization and kidnapped
robot problem. Position tracking requires knowledge of the
start position and is also known as local localization. The
problem is called global localization, if there is no priori
estimate of the pose. The kidnapped robot problem describes
a situation, where a localized robot is moved to a different
place without its knowledge. It is often used to test a robot’s
ability to recover from localization failures. Approaches which
are capable of solving the global localization problem can be
modified such that they can also solve the kidnapped robot
problem [1].

Usually robot odometric sensors are used to solve the
localization problem of wheeled robots. Odometric sensors
provide information about robot movements, but the provided
information is noisy and accumulates errors over time. Odome-
trie is accurate enough for local movements but is not suitable
for long term localization and global localization [2].

Additional sensors such as laser and vision provide informa-
tion about the environment of a mobile robot. Several methods
have been proposed to use this information to estimate the pose
of a mobile robot. Unfortunately laser sensors are expensive
and vision needs computational overhead of image processing.
Furthermore this techniques require a map and usually a start
position. If the start position is unknown, the pose have to
be searched in the whole map, which is difficult and time
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consuming in a large environment. A global pose estimation
using WLAN technology can support such methods by finding
the starting pose. Furthermore it can solve the kidnapped robot
problem by detecting localization failures and by providing a
new starting pose.

Nowadays mobile robots often are equipped with IEEE
802.11 WLAN adapters, in order to communicate with com-
puters or other mobile devices. Furthermore, many buildings
are already equipped with an IEEE 802.11 WLAN infrastruc-
ture, as a popular and inexpensive technology. Most WLAN
adapters are able to measure the signal strengths of received
packets as part of their standard operation. The signal strengths
of received packets vary noticeably by changing the position.
Thus, the signal strength can be used to estimate the position
of a mobile device by cheap technology.

In this paper, the problem of global localization is solved
using the WLAN infrastructure in an indoor scenario. It
extends the existing WLAN localization techniques in two
ways. First, it describes two techniques for estimating the
heading of a mobile robot. A measured set of signal strength
values of an omnidirectional antenna and a beam antenna is
compared with a radio map in order to estimate position and
heading of a mobile robot. Second, interpolation is proposed
in order to reduce the density of the calibration points in the
radio map and thus minimizing the manual effort to build
the map. Furthermore the proposed techniques can support
other map based pose estimation methods by finding a global
start position. The paper extends the work presented in [3] by
refining the algorithm of heading estimation and by presenting
more experimental results, which show the effectiveness of the
technique.

II. RW

Up to now there are developed several kinds of localization
techniques for the use in wireless networks. A review of the
existing techniques is given in [4]. This techniques can be
classified by the information they use:
• Connectivity information,
• Angle of Arrival (AoA),
• Time of Arrival (ToA),
• Time Difference of Arrival (TDoA),
• Received Signal Strength (RSS).

Connectivity information is available in all kinds of wireless
networks. The accuracy of the localization depends on the
range of the used technology and the density of the beacons.
In cellular networks, Cell-ID is a simple localization method
based on cell sector information [5]. In infrastructure mode
of a Wireless LAN (WLAN), the access point (AP) to which
the mobile device is currently connected, can be determined
since mobile devices know the MAC hardware address of
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the AP, which they are connected to. Bluetooth is another
technology, which allows a relatively accurate localization
because of its low radio range [6]. Besides the deployment
of Radio Frequency Identification (RFID) in Supply Chain
Management [7], the RFID technology is also suitable for
position estimation. RFID tags can be deployed at known
positions in the environment, in order to obtain position
information when they are in range. This information can be
be fused with data from other sensors (e.g. odometers) for the
purpose of improving the accuracy of localization (see [8] and
[9]).

AoA determines the position with the angle of arrival from
fixed anchor nodes using triangulation. A method, where a
wireless sensor node localizes itself by measuring the angle
to three or more beacon signals is in [10] proposed. Each
signal consists of a continuous narrow directional beam, that
rotates with a constant angular speed. Drawback of AoA
based methods is the need for a special and expensive antenna
configuration e.g. antenna arrays or rotating beam antennas.

ToA and TDoA estimate the range to a sender by measuring
the signal propagation delay. The Cricket localization system
[11] developed at MIT utilizes a radio signal and a ultrasound
signal for position estimation based on trilateration. TDoA of
these two signals are measured in order to estimate the distance
between two nodes. This technique can be used to track the
position of a mobile robot [12]. ToA as wells as TDoA require
a complex wireless network infrastructure, which is usually not
present in today’s WLAN installations.

RSS information can be used in most wireless technologies,
since mobile devices are able to monitor the RSS as part
of their standard operation. The distance between sender
and receiver can be obtained with the Log Distance Path
Loss Model described in [13]. Unfortunately, the propagation
model is sensitive to disturbances such as reflection, diffraction
and multi-path effects. The signal propagation depends on
building dimensions, obstructions, partitioning materials and
surrounding moving objects. Own measurements show, that
this disturbances make the use of a propagation model for
accurate localization in an indoor environment almost impos-
sible [3]. Fingerprinting, which is a method to overcome this
disadvantage by utilizing a radio map is in [14] introduced.
Fingerprinting is divided in two phases: In the initial calibra-
tion phase, the radio map is built by moving around and storing
RSS values at various predefined points of the environment.
In the localization phase, the mobile device moves in the same
environment and the position is estimated by comparing the
current RSS values with the radio map. A metric to compare
the measured RSS values with the radio map is Euclidean
distance proposed by [14]. A Bayesian algorithm is used in
[15] and [16] proposed Delaunay triangulation with lines of
constant signal strength.

Several methods for localization in WLAN environments
using RSS have been developed, in order to improve the
accuracy of the estimation. A Kalman filter is proposed by
[17], a Monte-Carlo algorithm is used by [18] as well by [19],
Statistical learning is applied by [20] and Fuzzy is used by [21]
and by [22]. All of these methods utilize a radio map and
estimate only the position but not the heading of the mobile

device. The main disadvantage of radio map based methods
is the high manual effort to build the map in the calibration
phase. The use of Delaunay triangulation and interpolation
allows a radio map with a low density of calibration points
and reduces the time for manual generation of the map [3].

III. C  R S S (RSS)

A. Measurement of Signal Strengths

Most mobile devices are able to monitor the RSS values
from APs in range as part of their standard operation. There
are two kinds of scanning modes: passive scanning and active
scanning. In passive scanning mode the WLAN card is put into
monitoring mode and waits for incoming packets. In active
scanning mode the mobile device sends a probe request packet
on every frequency and waits for the probe response packets
of the APs in range. Active scanning is an important feature
in WLAN positioning, because it obtains new RSS values of
all APs in range at the time of scanning.

B. Modeling of Signal Strength

The propagation model of RSS depends on the free space
loss of the signal. The free space loss F is defined as

F =
PRx

PTx
=

(
c

4 π d f

)2

=

(
λ

4 π d

)2

(1)

where PRx is the power of the received signal, PTx is the
power of the transmitted signal, c is the speed of light, f is
the frequency of the signal, d is the distance to the sender
and λ is the wavelength of the signal. Equation (1) can be
expressed in logarithmic scale:

F/dB = 10 log10

(
PRx

PTx

)
(2)

= −32.4 − 20 log10( f /MHz) − 20 log10(d/km)

where the unit of f is MHz and the unit of d is km.
In an indoor environment, where multi path effects occur,

equation (2) leads to the log distance path loss model [13],

PRx/dBm = P0/dBm − 10 γ log10

(
d
d0

)
(3)

where P0 is the RSS value at the distance d0 and γ is the
path loss exponent. Parameters P0, d0 and γ have to be
adapted to the geometry of every room in the building. Fig. 1
compares the log distance model with measurements in an
office building. It shows, that there are several measurements
with equal signal strength at points with distances of more
than 10 m.

The propagation model is sensitive to disturbances as
reflections, diffractions and multi-path effects. The signal
propagation depends on building dimensions, obstructions,
partitioning materials and surrounding moving objects. This
problem makes the use of a propagation model for accurate
localization in an indoor environment almost impossible.



0 5 10 15 20 25 30 35
−70

−65

−60

−55

−50

−45

−40

−35

−30

position / m

si
gn

al
 s

tre
ng

th
 / 

dB
m

Fig. 1. Propagation model versus real measurements

C. Distribution of Signal Strengths

At a fixed location, the RSS value from an AP varies
with time. This effect is caused by people moving around,
doors open and closes and other disturbances as Bluetooth
senders. Furthermore the distribution of the RSS values are
non-Gaussian and the median is not stable over long time. This
limits the accuracy of the position estimation significantly.
Fig. 2 shows the distributions of measurements at three days
at the same location.
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Fig. 2. Distributions of three different measurements

IV. L 

The proposed methods for localizing the mobile robot are
based on the use of RSS values of WLAN APs in range.
For both, a radio map based method and Euclidean distance
in combination with interpolation is used, because of the
described reasons. A measured set of RSS values of the
omnidirectional antenna and the beam antenna is compared
with the radio map. The radio map is built in an initial
calibration phase and contains measured sets of RSS values
at various predefined poses (x, y, θ). In the experiments, four

headings (0◦, 90◦, 180◦, 270◦) at every position are stored.
In the localization phase, RSS values of several APs are
recorded and compared with the radio map. One observation
in both phases consists of RSS values of both antennas and
all APs. Values of APs out of range are set to a minimal value
cmin = −100 dBm.

A. Estimation of the Position with Euclidean distance

The Euclidean distance is a metric to compare the obser-
vations of the localization phase with the radio map. The
Euclidean distance between two points P = (p1, p2, . . . , pn)
and Q = (q1, q2, . . . , qn), is defined as:

d =

√
(p1 − q1)2 + (p2 − q2)2 + · · · + (pn − qn)2 (4)

=

√√ n∑
i=1

(pi − qi)2

In WLAN localization the calibration data are compared with
the measured data:

d j,k =

√√ n∑
i=1

(
cAPi

j − sAPi
k

)2
(5)

where cAPi
j is the RSS value of APi at pose j in the radio

map, sAPi
k is the RSS value of APi at measurement k and n

is the total number of APs. The Euclidean distance d j,k is a
metric for the distance between the calibration data cAPi

j and
the measured data sAPi

k . After calculating d j,k for all calibration
points, there will be at least one pose with minimal d j,k. One
approach is to declare this pose to be the estimated pose
of the mobile robot. The accuracy of this method depends
beside other factors on the density of the underlying grid of
calibration points.

The main problem of radio map based localization systems
is the manual generation of the map [23]. In order to reduce the
manual effort to build the map, the density of calibration points
should be as low as possible [16]. Thus, the interpolation
of the estimated position is proposed. In this case a lower
density of calibration points is possible. The algorithm that
is described in this section interpolates the position and
heading of the mobile robot with weighted Euclidean distance.
The set of poses (xi, yi, θi) in the database is arranged by
the Euclidean distance. A fixed number of poses with least
Euclidean distance are used for estimation of the pose.

For interpolation purposes of the position, only the signals
of the omnidirectional antenna are used. The weights are built
with the reciprocal of the Euclidean distance:

x̂k =

J∑
j=1

w j,k · x j

J∑
j=1

w j,k

with w j,k =
1

d j,k
, (6)

ŷk =

J∑
j=1

w j,k · y j

J∑
j=1

w j,k

, (7)



where J is the number of weighted poses (least Euclidean
distance) and (x̂k, ŷk) is the estimated position of the mobile
robot.

B. Estimation of the heading with Euclidean distance

The estimated heading (θ̂k) is interpolated with values of the
beam antenna. The headings are weighted and interpolated as
vectors:

θ̂k = atan2

 J∑
j=1

w j,k sin θ j,

J∑
j=1

w j,k cos θ j

 , (8)

where atan2() is used in order to interpolate the heading in the
range from −π to π. Interpolation of the estimated heading
allows a relatively low density of headings in the calibration
phase. At every location, only four headings (∆90◦) are stored
in the database.

C. Estimation of the position with Delaunay triangulation

This method uses the interpolation based on Delaunay
triangulation and lines of constant signal strength (isolines).
For interpolation purposes of the position, the received signals
of the omnidirectional antenna are used only. With Delaunay
triangulation a network of triangles for a set of points (nodes)
in the plane is developed, such that no point is inside the
circumcircle of any triangle [24]. The nodes are represented
by the calibration points. Given a measured RSS value of one
AP, triangles whose nodes show RSS values higher and lower
than the measured value can be selected. Linear interpolation
between node values within the triangle delivers a more
detailed radio map consisting of a surface of interpolated RSS
values over the triangle. Moreover, it is possible to calculate an
interpolated line of constant RSS (isoline) within the triangle
and in the whole area of triangulation. Fig. 3 shows the isolines
of AP1, Fig. 4 shows the isolines of AP2.

Fig. 3. Lines of constant RSS (isolines) for AP1

Given two RSS values of different APs, it is possible to
select triangles whose interpolation surfaces include the ac-
cording isolines. If there is an intersection of both isolines, the

Fig. 4. Lines of constant RSS (isolines) for AP2

intersection point within the triangle can be calculated. Fig. 5
shows the merged radio map for AP1 and AP2. There are two
points of intersection in the radio map for this measurement.

Fig. 5. Merged radio map for AP1 and AP2

The pose is estimated using the points of intersection. Points
with a large distance to the real position have to be eliminated
from the calculation of the estimated position. The elimination
of points of intersection is performed using an acceptance
circle. This circle is built by a triangle of three points in the
radio map with least Euclidean distance to the measured RSS
values. It is assumed that the real position is near by this
triangle. The center of the circle is the balance point of the
triangle. The radius of the circle is built by the largest edge of
the triangle. All intersection points outside of the acceptance
circle were excluded from the calculation.

Fig. 6 shows a radio map with calibration poses (red
arrows), acceptance circle (cyan) and points of intersection
(magenta). The real pose of the robot is shown as blue arrow,
while the green arrow represents the estimated pose.

The estimated position (x̂, ŷ) is calculated with weighted



Fig. 6. Visualization of estimation technique

points of intersection:

x̂ =

∑N
i=1 wixi∑N

i=1 wi
, ŷ =

∑N
i=1 wiyi∑N
i=1 wi

, (9)

where wi is the weight of intersection xi, yi and N is the total
number of intersections inside the acceptance circle.

Experiments have shown, that measured RSS values closer
to APs are more reliable than those in larger distance [3].
Hence, the weight wi of intersection i is calculated with RSS
values of the crossing isolines:

wi = (si,1−smin)2+(si,2−smin)2 with smin = −100 dBm (10)

where si,1 and si,2 are the RSS values of the isolines at
intersection i and smin is the lowest possible RSS value. Higher
RSS values are measured closer to APs and lead to larger
weights.

D. Estimation of the heading with Delaunay triangulation

Here the heading is estimated with RSS values of the beam
antenna. For every point of intersection i a heading θ̂i with
assigned vector length ρ̂i is calculated. ρ̂i is a metric for
the quality of the estimation and is used as weight. The
estimation of (θ̂i, ρ̂i) is calculated with radio map values of
the surrounding triangle:

θ̂i = atan2

 J∑
j=1

wi

d j
sin θ j,

J∑
j=1

wi

d j
cos θ j

 , (11)

ρ̂i =

√√√√ J∑
j=1

wi

d j
sin θ j


2

+

 J∑
j=1

wi

d j
cos θ j


2

, (12)

where J is the number of weighted headings (with least
Euclidean distance) at the nodes of the surrounding triangle, d j

is the Euclidean distance between measured RSS values from
the beam antenna and stored RSS values in the radio map and
wi is the weight of intersection i (Eqn. 10). In Fig. 6 (θ̂i, ρ̂i)
are represented by magenta arrows.

The heading of the mobile robot θ̂ is estimated by adding
the headings of all intersections:

θ̂ = atan2

 N∑
i=1

J∑
j=1

wi

d j
sin θ j,

N∑
i=1

J∑
j=1

wi

d j
cos θ j

 , (13)

ρ̂ =

√√√√ N∑
i=1

J∑
j=1

wi

d j
sin θ j


2

+

 N∑
i=1

J∑
j=1

wi

d j
cos θ j


2

. (14)

In Fig. 6 (θ̂, ρ̂) is represented by the green arrow.
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Fig. 7. ρ̂ versus estimation error

Fig. 7 compares ρ̂ with the estimation error of the heading of
10 measurements at the same location. Measurements 7 and
8 achieve large estimation errors of 180 ◦. This large errors
correspond with very low values of ρ̂, which indicate a low
estimation accuracy. It is proposed to use ρ̂ in a later signal
processing stage to weight the estimated heading.

V. E S

The experiments are carried out with a mobile robot
Pioneer3-AT manufactured by ActivMedia (Fig. 8). The robots

Fig. 8. Pioneer3-AT



is equipped with four wheels which are driven by two motors.
This driving concept is called skid-steering locomotion and is
similar to the operation of an army tank. Fig. 9 shows the

Fig. 9. Skid-steering locomotion

chassis of the robot with four wheels (blue). The wheels are
driven over belts and gears (brown) by two motors (green).
The position of the mobile robot is estimated with dead
reckoning (odometry) over two encoders (yellow), which are
mounted at the end of the motors. Position estimation with
dead reckoning is highly inaccurate for skid-steered robots,
because of slippage, which occurs when the robot moves
curves [25]. For global localization, it is necessary to use
additional sensor information, as GPS, laser or WLAN RSS.

The robot has four wheels with Since only two motors drive
the robot, the wheel speeds on every side of the robot are
always the same. This leads to skid-steering kinematics, where
the velocities in the robot’s local reference frame are given by:

vR =


vx

vy

ωR

 =


r·ϕ̇right

2 +
r·ϕ̇left

2

0
r·ϕ̇right

2b +
−r·ϕ̇left

2b

 , (15)

where vx is the velocity in forward direction, vy is the velocity
in sidewards direction, ωR is the rotation speed, ϕ̇right are the
angular velocities of the wheels on the right side and ϕ̇left are
the angular velocities of the left side of the robot, r is the
radius of the wheels and b is the wheel offset (Fig. 10). The
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Fig. 10. Velocities in the robot reference frame

velocities in the global reference frame (world frame) depend

on the heading (θ) of the robot:

vW =


vW

x

vW
y

ωW
R

 =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ·


vx

vy

ωR

 , (16)

The robot is equipped with an embedded computer for real
time robot control and an additional PC with two WLAN
cards for communication and localization. One WLAN card
is connected to an omnidirectional antenna, the other card
is connected to a beam antenna. The directionality of the
beam antenna is used to estimate the heading of the robot.
Fig. 11 shows the measured polar plots of the beam and the
omnidirectional antenna.

Fig. 11. Characteristic of beam (left) and omnidirectional antenna (right)

A robot server is included in the operating system of the
embedded computer. It manages the low-level tasks of robot
control and operation, including motion and odometry. The
robot server receives the commands from the PC via RS-232
serial link. It is the job of a program running on the PC to per-
form robotics tasks such as sensor fusion, localization, map-
ping, and navigation. For programming purposes ActivMedia
provides the toolkit ARIA (ActivMedia Robotics Interface for
Application) [26]. ARIA is a object oriented, cross-platform
(Windows/Linux) toolkit for ActivMedia mobile robots. It is
written entirely in C++, but access to the API is also available
from the Java programming languages via “wrapper” libraries.
ARIA provides an interface to control the robot’s velocity,
heading, relative heading, and provide detailed information
about odometry and operating conditions from the mobile
robot.

The operation system on the PC is Ubuntu Linux, which
offers support for wireless communication by the wireless
extension (WE) [27]. WE is an application programming
interface (API) allowing a user space program to configure
a WLAN driver and receive statistic information. The WE
provide an interface via ioctl(), which is documented in
wireless.h. Good examples for programming WE are the
wireless tools for Linux. The program iwlist scans the
WLAN for accessible APs and monitors the RSS values along
with hardware MAC addresses of APs in range. There are
two kinds of scanning modes: passive scanning and active
scanning. In passive scanning mode the WLAN card is put into
monitoring mode and waits for incoming packets. In active
scanning mode the mobile device sends a probe request packet



on every frequency and waits for the probe response packets
of the APs in range. Active scanning is an important feature in
WLAN positioning, because the time of the measurements for
all RSS values can be determined. Active scanning obtains new
RSS values of all APs in range at the time of scanning. Since
version 21 of the WE, active scanning mode is supported. In
older Linux kernel versions active scanning is not supported
and it is necessary to modify the kernel driver in order to
receive packets from all APs in range [28]. On up to date
Linux distributions, there is no need to modify kernel drivers.

VI. S D

The software is divided into three parts: a localization
engine, a graphical user interface (GUI) and a WLAN scanner
(Fig. 12). The localization engine and the GUI are written in
the Matlab script language, the WLAN scanner is implemented
in C. The WLAN scanner uses the WE ioctl()-Interface for
reading RSS values from both WLAN adapters.

Matlab Localization 
Engine and GUI

TCP/IP

ioctl()

WLAN
Scanner

Linux
WLAN Hardware

Fig. 12. Design of the localization software

The communication between localization engine and
WLAN scanner is build with TCP/IP sockets. Since the
localization engine are built on Matlab, it is possible to run it
on every computer which offers a Matlab environment and a
network access. The GUI is used for monitoring information
to the user and for building the radio map. Fig. 13 shows the
GUI with a map of a room in the Computer Science building.
The red arrows around the red dots show the four headings
of the robot in every calibration point of the radio map. The
colored lines represent the RSS isolines. In order to build the
radio map, the user moves the robot to the predefined poses
(red arrows) and stores the RSS values. It is optional to change
the Server IP address, the network interfaces for both antennas
and the ESSID of the APs. In the localization phase, the blue
arrow represents the real pose of the mobile robot and green
and yellow arrow visualizes estimated poses. The estimates
changes with time without moving the robot, because of the
noisy RSS values.

VII. E R

Experiments are performed in an office building of the Com-
puter Science Department. A test series was measured at the
hallway shown in Fig. 6. The existing WLAN-infrastructure

was used for the measurements. Fig. 14 shows a histogram
of position errors achieved in this test series, which are in a
range from 0 to 4 m. In most cases, the accuracy is better than
1.0 m. The accuracy depends directly on the position of the
APs in range. For a good and reliable estimation, three ore
more APs in a short distance are required. The placement of
additional APs increases the accuracy of the estimation.
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Fig. 14. Histogram of estimation error of position

Fig. 15 compares the estimation accuracy of Delaunay
isoline interpolation with Euclidean distance interpolation. In
most cases estimations with isoline method achieve a better
accuracy than estimations with Euclidean distance only.
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Fig. 15. Comparison of Euclidean distance and Delaunay interpolation

Fig. 16 shows a histogram of the heading error. Heading
errors are in the full range from 0 to 180 ◦. In most cases
an accuracy better than 45 ◦ can be achieved and worse
estimations can be detected by low values of ρ̂.

VIII. C  FW

This paper has presented two methods for estimating the
pose of a mobile robot. The methods are based on a radio map
and use RSS values of WLAN APs in range. In order to reduce
the density of calibration points in the radio map, Delaunay
triangulation and weigthed Euclidean distance is applied to
interpolate the position of the mobile robot. Furthermore the
estimation of the heading of a mobile robot with the aid of
a beam antenna was presented. Since the accuracy of the



Fig. 13. Matlab Localization engine and GUI
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Fig. 16. Histogram of estimation error of heading

estimation depends highly on the positions of the APs in the
environment, the placement of the APs has to be optimized,
in order to get a good and reliable position estimation.

In future work the accuracy of the estimation should be
improved by using a Kalman filter or a Monte Carlo particle
filter. Furthermore the accuracy may be improved by fusion
with position information obtained from other sensor e.g.
odometry, sonar or laser.
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