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Indoor Location Tracking in Non-line-of-Sight Environments
Using a IEEE 802.15.4a Wireless Network

Christof Röhrig and Marcel Müller

Abstract— Indoor location tracking of mobile robots or
transport vehicles using wireless technology is attractive for
many applications. IEEE 802.15.4a wireless networks offer
an inexpensive facility for localizing mobile devices by time-
based range measurements. The main problems of time-based
range measurements in indoor environments are errors by
multipath and non-line-of-sight (NLOS) signal propagation.
This paper describes indoor tracking using range measurements
and an Extended Kalman Filter with NLOS mitigation. The
commercially available nanoLOC wireless network is utilized
for range measurements. The paper presents experimental
results of tracking a forklift truck in an industrial environment.

I. Introduction

Indoor location tracking of mobile systems using wireless
technology is attractive for many robotics and logistics
applications. Wireless networks offer an inexpensive facility
for communication and localization of mobile devices. The
new wireless network standard IEEE 802.15.4a specifies
two optional signalling formats based on Ultra Wide Band
(UWB) and Chirp Spread Spectrum (CSS) with a precision
time-based ranging capability [1]. Typical applications of
IEEE 802.15.4a are low power Wireless Personal Networks
(WPAN) and Wireless Sensor Networks (WSN). A WSN
consist of spatially distributed autonomous sensor nodes for
data acquisition. Besides military applications and monitor-
ing of physical or environmental conditions, robotics [2] and
logistics [3] are typical application fields of WSN.

The main problems of time-based range measurements
in indoor environments are errors by multipath and non-
line-of-sight (NLOS) measurements. For time-based range
measurements, the direct line-of-sight (LOS) path which
connects the transmitter and receiver is needed to calculate
the range between them. In indoor environments, the LOS
path can be blocked and the communications is conducted
through reflections and diffractions. This phenomenon leads
to positive bias in the range measurements and finally causes
errors in location tracking. A similar problem is multipath
fading, which occurs in indoor environments, where the sig-
nal propagates over multipath reflections. The received signal
is a superposition of the transmitted signal with different
delays. Multipath fading leads also to range measurements
with positive bias.

This paper studies the tracking of a forklift truck using
a nanoLOC WSN in conjunction with an Extended Kalman
Filter and NLOS detection and mitigation. The nanoLOC
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WSN, developed and distributes by Nanotron Technologies,
offers ranging capabilities using CSS. The video attachment
of the paper shows the movement of the forklift truck in a
tracking experiment.

The paper extends the work we have presented in [4]. The
detection of NLOS conditions is studied and techniques for
error mitigation are developed and compared by real-world
experiments. The experimental results show the effectiveness
of the proposed techniques.

II. RelatedWork

Up to now several kinds of localization techniques are
developed for the use in wireless networks. A review of
existing techniques is given in [5]. These techniques can be
classified by the information they use. These informations
are: connectivity, Received Signal Strength (RSS), Angle of
Arrival (AoA), Time of Arrival (ToA), Round-trip Time of
Flight (RToF) and Time Difference of Arrival (TDoA).

Connectivity information is available in all kinds of wire-
less networks. The accuracy of localization depends on the
range of the used technology and the density of the beacons.
In cellular networks Cell-ID is a simple localization method
based on cell sector information. In infrastructure mode of
a Wireless LAN (WLAN), the access point (AP) to which
the mobile device is currently connected, can be determined
since mobile devices know the MAC hardware address of the
AP, which they are connected to. In a WSN with short radio
range, connectivity information can be used to estimate the
position of a sensor node without range measurement [6].

RSS information can be used in most wireless technolo-
gies, since mobile devices are able to monitor the RSS as
part of their standard operation. The distance between sender
and receiver can be obtained with the Log Distance Path Loss
Model described in [7]. Unfortunately, the propagation model
is sensitive to disturbances such as reflection, diffraction
and multi-path effects. The signal propagation depends on
building dimensions, obstructions, partitioning materials and
surrounding moving objects. Own measurements show, that
these disturbances make the use of a propagation model
for accurate localization in an indoor environment almost
impossible [8].

AoA determines the position with the angle of arrival
from fixed anchor nodes using triangulation. Drawback of
AoA based methods is the need for a special and expensive
antenna configuration e.g. antenna arrays or rotating beam
antennas.

ToA, RToF and TDoA estimate the range to a sender by
measuring the signal propagation delay. The Cricket localiza-
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tion system [9] developed at MIT utilizes a radio signal and
an ultrasound signal for position estimation based on trilat-
eration. TDoA of these two signals are measured in order to
estimate the distance between two nodes. This technique can
be used to track the position of a mobile robot [10]. UWB
offers a high potential for range measurement using ToA,
because the large bandwidth (> 500 MHz) provides a high
ranging accuracy [11]. In [12] UWB range measurements
are proposed for tracking a vehicle in a warehouse. IEEE
802.15.4a specifies two optional signalling formats based on
UWB and CSS with a precision ranging capability. Nanotron
Technologies distributes a WSN with ranging capabilities
using CSS as signalling format.

The main problems of time-based range measurements
in indoor environments are errors by multipath and NLOS
signal propagation. A method to mitigate these errors is
the Biased Kalman Filter (BKF). In [13] a BKF is applied
to mitigate range errors of time based measurement for
localization of emergency callers in cellular networks. The
effectiveness of the BKF is proven by simulations.

III. The nanoLOC Localization System

Nanotron Technologies has developed a WSN which can
work as a Real-Time Location Systems (RTLS). The distance
between two wireless nodes is determined by Symmetrical
Double-Sided Two Way Ranging (SDS-TWR). SDS-TWR
allows a distance measurement by means of the signal prop-
agation delay as described in [14]. It estimates the distance
between two nodes by measuring the RToF symmetrically
from both sides.

The wireless communication as well as the ranging
methodology SDS-TWR are integrated in a single chip, the
nanoLOC TRX Transceiver [15]. The transceiver operates
in the ISM band of 2.4 GHz and supports location-aware
applications including Location Based Services (LBS) and
asset tracking applications. The wireless communication is
based on Nanotron’s patented modulation technique Chirp
Spread Spectrum (CSS) according to the wireless standard
IEEE 802.15.4a. Data rates are selectable from 2 Mbit/s to
125 kbit/s.

SDS-TWR is a technique that uses two delays, which
occur in signal transmission to determine the range between
two nodes. This technique measures the round trip time and
avoids the need to synchronize the clocks. Time measurement
starts in Node A by sending a package. Node B starts its
measurement when it receives this packet from Node A
and stops, when it sends it back to the former transmitter.
When Node A receives the acknowledgment from Node
B, the accumulated time values in the received packet are
used to calculate the distance between the two stations. The
difference between the time measured by Node A minus the
time measured by Node B is twice the time of the signal
propagation. To avoid the drawback of clock drift the range
measurement is preformed twice and symmetrically. The
signal propagation time td can be calculated as

td =
(T1 − T2) + (T3 − T4)

4
, (1)

where T1 and T4 are the delay times measured in node A in
the first and second round trip respectively and T2 and T3 are
the delay times measured in node B in the first and second
round trip respectively. This double-sided measurement zeros
out the errors of the first order due to clock drift [14].

Based on the nanoLOC TRX transceiver and the micro-
controller ATmega 128L, the nanoLOC WSN can be used
for developing location-aware and distance ranging wireless
applications [16]. A mobile tag localizes itself by measuring
the distances to a set of anchors as reference points. The
anchors are located to predefined positions within a Cartesian
coordinate system. The tag position can be calculated by
trilateration.

IV. Location Tracking Using the Extended Kalman Filter

By monitoring a dynamic system, the interior process state
such as position and velocity of mobile objects is not direct
accessible. The distance measurements are subject to errors
and noise. The Kalman Filter is an efficient recursive filter,
which estimates the state of a dynamic system out of a series
of incomplete and noisy measurements by minimizing the
mean of the squared error. It is also shown to be an effective
tool in applications for sensor fusion and localization.

The equations of the Kalman Filter fall into two groups:
“predictor equations” and “corrector equations”. Based on
the system input parameters, the current state estimate and
error covariance estimate are projected forward to obtain
the predicted a priori estimates for the next time step.
This operation is called “time update”. Following an actual
measurement is incorporated into the a priori estimate to
obtain an improved a posteriori estimate. In other words
the measurements adjust the predicted estimate at that time,
so that this operation is denoted “measurement update”.
As initial values for the primary estimation x̂0 and P0 are
passed. After each time and measurement update pair, the
process is repeated with the previous a posteriori estimates.
This recursive nature is one of the appealing features of the
Kalman Filter and the essential advantage over other stochas-
tic estimation methods. The filter recursively conditions the
current estimate on all of the past measurements and can be
used in real-time applications.

The basic filter is well-established, if the state transition
and the observation models are linear distributions. In the
case, if the process to be estimated and/or the measurement
relationship to the process is specified by a non-linear
stochastic difference equation, the Extended Kalman Filter
(EKF) can be applied. This filtering is based on linearizing a
non-linear system model around the previous estimate using
partial derivatives of the process and measurement function.

Fig. 1 shows a complete picture of the operations of
the EKF by presenting the specific predictor and corrector
equations. The time update projects the a priori state and
covariance estimates forward from time step to step. The
first task during the measurement update is to compute the
Kalman gain Kk. The next step is to generate an a posteriori
state estimate x̂k+1 as the result of the filter, in this case.
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The final step is to obtain the corresponding error covariance
estimate Pk+1 for the next iteration.

Predictor Equations

x*k+1 = f (xk, uk, 0)
P*k+1 = Ak+1 PkAk+1T + Wk+1 QkWk+1

T

Corrector Equations

Kk+1 = P*k+1Ck+1T ∙ (Ck+1P*k+1Ck+1T + Vk+1Rk+1Vk+1T)‐1
xk+1 = x*k+1 + Kk+1 ∙ (yk+1 – h (x*k+1, 0))

Pk+1 =  (I ‐ Kk+1 Ck+1) ∙ P*k+1

^

^

Initial estimates for x0 und P0^

Fig. 1. Time update and measurement update equations of the Extended
Kalman Filter

A. Design of the Extended Kalman Filter

The Extended Kalman Filter is suitable to determine the x-
and y-position of the mobile tag with the measured distances
to at least three anchors. Using the trilateration method the
anchor distances ri are calculated as follow:

ri =

√︁
(px − ax,i)2 + (py − ay,i)2

, (2)

where (ax,i, ay,i) are the x- and y-positions of anchor i and
(px, py) represents the x- and y-position of the mobile tag to
be located.

To gain the unknown tag position, the equations in (2) are
solved for px and py, and are transformed in matrices:

H ·
(︃
px

py

)︃
= z with H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 · ax,1 − 2 · ax,2 2 · ay,1 − 2 · ay,2

...
...

2 · ax,1 − 2 · ax,n 2 · ay,1 − 2 · ay,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
r2

2 − r1
2 + ax,1

2 − ax,2
2 + ay,1

2 − ay,2
2

...
rn

2 − r1
2 + ax,1

2 − ax,n
2 + ay,1

2 − ay,n
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3)
where n is the overall number of anchor nodes. Eqn. 3 can
be solved using the method of least squares:(︃

p̂x

p̂y

)︃
= (HTH)−1HT · z (4)

For location tracking using EKF, Eqn. (3) needs only to
be solved for the initial estimate x̂0. In this work the raw
trilateration (3) is also used as reference. The EKF addresses
the general problem of estimating the interior process state
of a time-discrete controlled process, that is governed by
non-linear difference equations:

x̃k+1 = f (x̂k,uk,wk),
ỹk+1 = h(x̃k+1, vk+1). (5)

The state vector contains the tag position xk = (px, py)T.
The optional input control vector uk = (vx, vy)T contains the
desired velocity of the tag. These values are set to zero, if
the input is unknown. The observation vector yk represents
the observations at the given system and defines the entry
parameters of the filter, in this case the results of the range
measurements. The process function f relates the state at the

previous time step k to the state at the next step k + 1. The
measurement function h acts as a connector between xk and
yk. The notation x̃k and ỹk denotes the approximated a priori
state and observation, x̂k typifies the a posteriori estimate
of the previous step. Referring to the state estimation, the
process is characterized with the stochastic random variables
wk and vk representing the process and measurement noise.
They are assumed to be independent, white and normal
probably distributed with given covariance matrices Qk and
Rk. To estimate a process with non-linear relationships the
equations in (5) must be linearized as follow:

xk+1 ≈ x̃k+1 + Ak+1 · (xk − x̂k) + Wk+1 · wk

yk+1 ≈ ỹk+1 + Ck+1 · (xk+1 − x̃k+1) + Vk+1 · vk+1,
(6)

where Ak+1,Wk+1,Ck+1 and Vk+1 are Jacobian matrices with
the partial derivatives:

Ak+1 =
∂ f
∂x (x̂k,uk, 0) Wk+1 =

∂ f
∂w (x̂k,uk, 0)

Ck+1 = ∂h
∂x (x̃k+1, 0) Vk+1 = ∂h

∂v (x̃k+1, 0).
(7)

Because in the analyzed system the predictor equation con-
tains a linear relationship, the process function f can be
expressed as a linear equation:

xk+1 = Axk + Buk + wk, (8)

where the transition matrix A and B are defined as:

A =

(︃
1 0
0 1

)︃
, B =

(︃
T 0
0 T

)︃
,

(9)

where T is the constant sampling time.
The observation vector yk contains the current measured

distances:
yk =

(︀
r1 · · · rn

)︀T
. (10)

The initial state estimate x̂0 is calculated based on (3). For
the subsequent estimation of the tag position (px, py) the
functional values of the non-linear measurement function
h must be approached to the real position. The function
h comprises the trilateration equations (2) and calculates
the approximated measurement ỹk+1 to correct the present
estimation x̃k+1. The equation ỹk+1 = h(x̃k+1, vk+1) is given
as: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̂1
...

r̂n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√︀

( p̃x − ax,1)2 + ( p̃y − ay,1)2

...√︀
( p̃x − ax,n)2 + ( p̃y − ay,n)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + vk+1 . (11)

The related Jacobian matrix Ck+1 = ∂h
∂x (x̃k, 0) describes the

partial derivatives of h with respect to x:

Ck+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂r̂1
∂ p̃x

∂r̂1
∂ p̃y

...
...

∂r̂n
∂ p̃x

∂r̂n
∂ p̃y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ with

∂r̂i
∂p̃x

=
p̃x−ax,i√

(p̃x−ax,i)2+(p̃y−ay,i)2

∂r̂i
∂p̃y

=
p̃y−ay,i√

(p̃x−ax,i)2+(p̃y−ay,i)2
.

(12)

Given that h contains non-linear difference equations the
parameters ri as well as the Jacobian matrix Ck+1 must be
calculated newly for each estimation.
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B. Detection of NLOS range measurements

The range measurements can be modeled as

ri,k = di,k + ni,k + ei,k,NLOS, (13)

where ri,k is the range measurement to node i at sample
time k, di,k is the real distance, ni,k is the measurement
noise and ei,k,NLOS is the measurement error due to NLOS.
The measurement noise is modeled as Gaussian noise ni,k ∼

𝒩(0, σi), where σi can be identified by experiments.
Two different techniques for NLOS detection are studied.

Both methods use the time update of the Kalman Filter to
estimate the position of the vehicle

x̃k+1 = Axk + Buk, (14)

and to calculate the range estimates as

r̂i,k+1 =

√︁
(p̃x,k+1 − ax,i)2 + (p̃y,k+1 − ay,i)2

. (15)

The first method compares the range estimates to the real
range measurements in order to detect NLOS:

êi,k+1 = ri,k+1 − r̂i,k+1 (16)

Assuming small tracking errors r̂i,k+1 ≈ di,k+1 and comparing
(13) with (16) leads to

êi,k+1 ≈ ni,k + ei,k,NLOS (17)

NLOS is detected, if the error is positive and larger than a
range error limit:

êi,k+1 ≥ ei,limit : NLOS
êi,k+1 < ei,limit : LOS, (18)

where the error limit ei,limit is obtained experimentally.
The second technique use the standard deviation of the

estimated range measurement errors (16) to detect NLOS
as described in [13]. Under NLOS condition, the signal
propagation path changes quickly, when a vehicle moves.
Owing to this fact, the standard deviation of the range
measurement errors is significantly larger in case of NLOS
than in case of LOS condition. The standard deviation of
the range errors (16) is estimated periodically in a floating
window:

σ̂i =

⎯⎸⎷
1
K

k∑︁
j=k−K+1

ê2
i, j (19)

where K is the size of the floating window. Comparing σ̂i

with σi detects NLOS conditions:

σ̂i ≥ γσi : NLOS

σ̂i < γσi : LOS (20)

The parameter γ can be find out experimentally. γ > 1
has to be chosen to reduce the probability of false alarm.
The effectiveness of both techniques depends on the tracking
performance of the EKF and on the quality of the initial state
estimate x̂0.

C. Mitigation of NLOS range measurements

Two slightly different methods for mitigation of NLOS
range measurements have been studied. Both techniques use
the Biased Kalman Filter. If NLOS is detected, the corre-
sponding elements of the measurement covariance matrix R
are increased:

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ2

r,1 0 · · · 0
0 σ2

r,2 · · · 0
...

...
. . .

...
0 0 · · · σ2

r,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (21)

The first technique (BEKF1) uses the estimated range error
obtained from (16) to increase the covariance of R:

σ2
r,i =

⎧⎪⎪⎨⎪⎪⎩ βêiσ
2
i : NLOS

σ2
i : LOS , (22)

where β is chosen by experiments to give a good tracking per-
formance. The second method (BEKF2) uses the estimated
covariance to increase the elements of R:

σ2
r,i =

⎧⎪⎪⎨⎪⎪⎩ ασ̂2
i : NLOS

σ2
i : LOS , (23)

where σ̂2
i is obtained from (19) and α is chosen by experi-

ments to give a good tracking performance.
These techniques are compared with an EKF, which dis-

cards NLOS range measurements. The NLOS measurements
are discarded by adapting the output equation of the EKF.
Only LOS measurements are included in yk and Ck of (10)
and (12).

V. Experiment Results and Performance Analysis

A. Experimental Setup

In a test series, the position of a forklift truck is tracked
using the described method. The experiments are carried out
at a demonstration storage of the Fraunhofer-Institute for Ma-
terial Flow and Logistics in Dortmund Germany. The forklift
truck moves in automatic mode along a half oval course.
It is controlled by laser triangulation, which has a tracking
performance better than a few cm. The video attachment of
the paper shows the forklift truck moving along this course.
The standard nanoLOC development kit which contains five
sensor boards with sleeve dipole omnidirectional antennas is
utilized for the experiment. Four anchor nodes are placed at
the edges of the course. The sampling time T is chosen to
0.3 s. Several experiments with different NLOS conditions
have been performed to evaluate the effectiveness of the
proposed techniques. The measured range data are logged
into a file for later analysis. The proposed NLOS mitigation
techniques are implemented in Matlab and are evaluated
offline.

B. Parameter Tuning

The effect of the Kalman estimation depends significantly
on the parameters of the covariance matrices. To preferably
gain an exact estimation, appropriate values for the process
noise covariance Qk and the measurement noise covariance
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Rk must be detected. The process noise covariance represents
the accuracy of the estimates for the interior process state.
The measurement noise covariance depends directly on the
environment of the range measurements. Several experiments
with different anchors in a static environment show covari-
ances in a range between 0.0216 m2 and 0.354 m2. The mea-
surement noise covariance is chosen with σ2

i = 0.1328 m2 as
mean variance of all experiments. These two matrices have
a large impact in progress of the error covariance estimate
Pk, whose initial value is assumed to P0 = I · 10−2.

The parameters have been chosen by experiments to
ei,limit = 5 m, α = 1, K = 10, β = 1 m−1 and γ = 3 .
These parameters show the best tracking performance for
the associated methods.

C. Experimental Results

Several experiments with different NLOS conditions have
been performed to evaluate the effectiveness of the proposed
techniques. In all experiments anchor node 1 is blocked
manually with a sheet of metal several times during the
motion of the forklift truck. The results of three experiments
are summarized in Table I. Fig. 2 to Fig. 5 show the results of
the first experiment. The LOS was blocked manually several
times in intervals of 5 s. The red line shows the course of
the forklift truck, which is controlled by laser triangulation.
The raw trilateration is shown with green dots and calculated
with Eqn. (4). Owing to the measurement noise of the range
measurements, the raw trilateration is spread over the whole
area. In all figures the raw trilateration is calculated without
NLOS mitigation. Owing to this fact, the measured distances
to anchor 1 are too large, and the estimated positions are
displaced towards larger values of x and y. Several of the
trilateration points are out of the range of the axis.

Fig. 2 shows the results of the EKF without NLOS
mitigation. The estimated position of the EKF is shown as
blue line. Fig. 2 shows that NLOS leads to worse tracking
performance, if an unmodified EKF is applied. NLOS dis-
places the estimated position in the opposite direction of the
related anchor node.
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Fig. 2. Tracking results of EKF without NLOS mitigation

The same data are used for the EKF and NLOS measure-
ment exclusion shown in Fig. 3. The tracking performance is
much better than using an unmodified EKF. In environments
with a large number of NLOS conditions, the lack of LOS
measurements can lead to estimation failure. In this setup
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Fig. 3. Tracking results of EKF with NLOS measurement rejection

measurements with êi > 10 m are discarded. Lowering this
limit lead to a complete failure of the location estimation. In
cases where the tracking error becomes high, the range error
estimates increases and all measurements are discarded.

The BEKF uses both LOS and NLOS range measure-
ments. NLOS measurements are less weighted than LOS
measurements. Fig. 4. shows the results from using BEKF
with NLOS mitigation method BEKF1. The tracking perfor-
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Fig. 4. Tracking results of BEKF1

mance is better than using an unmodified EKF. The filter
reacts immediately after detecting a NLOS condition.

Fig. 5 shows the results from using NLOS mitigation
method BEKF2. The tracking performance is slightly better
than method BEKF1. Fig. 6 shows the distribution of the
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Fig. 5. Tracking results of BEKF2

true range errors ei of the four anchor nodes. The distribution
shows NLOS condition in anchor node 1 and biased range
errors in the other anchor nodes, which may be caused by
multipath signal propagation.
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TABLE I
Mean absolute error and standard deviation

# EKF EKF disc. BEKF1 BEKF2
mean abs error 1 1,76 0,59 0,47 0,28

standard deviation 1,36 1,07 1,21 0,91
mean abs error 2 0,51 0,51 0,46 0,38

standard deviation 0,81 0,81 0,78 0,75
mean abs error 3 0,56 0,58 0,51 0,58

standard deviation 1,52 1,55 1,43 1,55

The mean absolute error and the standard deviation of the
errors are listed in Table I, for three experiments. In the first
experiment LOS was blocked several times in intervals of
5 s. In experiment 2 LOS is blocked for 4 s just before and
after the curve. In the third experiment LOS is blocked for
8 s in the second half of the course. BEKF2 shows the best
tracking performance in most cases.

VI. Conclusions

In this paper, location tracking of an forklift truck using
range measurements and Biased Extended Kalman Filtering
with NLOS mitigation is described. The main source for
ranging errors in indoor environments is NLOS and multi-
path signal propagation. Two different techniques for NLOS
mitigation have been evaluated and compared with an un-
modified EKF and with an EKF with NLOS measurement
exclusion. Discarding NLOS measurements is the easiest
way to handle NLOS range measurements. In environments
with a large number of NLOS conditions, the lack of LOS
measurements may lead to estimation failure. In cases where
the tracking error becomes high, the range error estimates
increases and all measurements are discarded.

The BEKF uses LOS as well as NLOS range measure-
ments. NLOS measurements are less weighted than LOS
measurements. The first technique (BEKF1) uses the esti-

mated range error directly. The second technique (BEKF2)
calculates the standard deviation of the range errors. Both
techniques are more robust than EKF and offer better track-
ing performance. The first technique reacts faster on NLOS.
The second technique leads to a slightly better tracking
performance.
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