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Localization of an Omnidirectional Transport Robot
Using IEEE 802.15.4a Ranging and Laser Range Finder
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Abstract— Automated Guided Vehicles (AGVs) are used in
warehouses, distribution centers and manufacturing plants in
order to automate the internal material flow. Usually AGVs are
designed to transport large and heavy transport units such as
Euro-pallets or mesh pallets. Just-in-time inventory manage-
ment and lean production requires small transportation units
to enable one-piece-flow. Furthermore short production cycles
require a flexible material flow which can not be fulfilled by
continuous material handling devices like belt or roll conveyors.
A solution to meet these demands are small mobile robots for
material transport which can replace conventional conveyor
systems or large AGVs. The paper presents localization and
tracking of an omnidirectional mobile robot equipped with
Mecanum wheels, which was designed to transport Euro-bins
in a distribution center or warehouse. Localization is realized
by sensor fusion of range measurements obtained from an
IEEE 802.15.4a network and laser range finders. The IEEE
802.15.4a network is used for communication as well as for
global localization. Laser range finders are used to detect
landmarks and to provide accurate positioning for docking
maneuvers. The range measurements are fused in a Monte
Carlo Particle Filter. The paper develops a new motion model
for an omnidirectional robot as well as a sensor model for
IEEE 802.15.4a range measurements. The experimental results
presented in the paper show the effectiveness of the developed
models.

I. Introduction

Just-in-time inventory management and short production
cycles require flexible material flow as well as usage of small
transportation units [1]. These demands can be met by using
small Automated Guided Vehicles (AGVs) which act as a
swarm of mobile robots. Several companies have introduced
small AGVs for logistic applications. Examples are “The
Kiva Mobile Fulfillment System (MFS)” [2] and “ADAM™
(Autonomous Delivery and Manipulation)” [3]. Inexpensive
localization of small AGVs is an important issue for many
logistic applications and object of current research activities.
The Kiva MFS uses bar codes on the floor which can be
detected with a camera by the AGVs [4]. These bar codes
specify the pathways and guarantee accurate localization.
Drawbacks of this solution are the risk of polluting the bar
codes and the need for predefined pathways which restrict
the movements of the AGVs.

Another approach in saving cost for localization is the
usage of one technology for more than one function. The
paper proposes the usage of an IEEE 802.15.4a Wireless
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Sensor Network (WSN) for communication as well as for
global localization and laser range finders for safety as
well as for detecting landmarks and local localization. A
WSN consists of spatially distributed autonomous sensor
nodes for data acquisition. Besides military applications and
monitoring physical or environmental conditions, WSN can
also be used for localization. To localize a mobile node,
called tag, there have to be a couple of nodes with fixed
and known positions. These nodes are called anchors. WSNs
have the advantages that they can be used in a wide field of
applications and that they are inexpensive and flexible. An
overview of applications for WSNs in logistics is given in
[5]. Disadvantage of using a WSN for localizing a mobile
robot is the relative low accuracy which is insufficient for
docking maneuvers.

Fig. 1. Omnidirectional transport robot

Fig. 1 shows the transport robot which was designed and
built in the Intelligent Mobile Systems Lab of the University
of Applied Sciences and Arts in Dortmund. It can transport
bins with Euro footprint (600x400 mm) in manufacturing
plants, distribution centers or warehouses. The robot is
equipped with four Mecanum wheels in order to provide
omnidirectional motion. This makes the robot applicable in
environments with narrow passages and corners. The video
attachment of the paper shows the omnidirectional motion
capabilities of the robot. The robot is equipped with two
laser range finders (Sick S300) which provide operational
safety.

This paper extends the work presented in [6] and [7]
in several ways. A new motion model for omnidirectional
robots is developed and evaluated with experiments using a
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mobile robot with Mecanum wheels. A Monte Carlo Particle
Filter (MCP) filter is used instead of an Extended Kalman
Filter (EKF) in order to deal with non Gaussian motion
and sensor models. Furthermore laser range finders are used
to detect landmarks and to provide the accuracy which is
necessary for docking maneuvers. To localize the mobile
robot, the distances and angles to landmarks are fused with
the range measurements of the WSN. Both measurements
are used by a MCP together with dead reckoning information
obtained from wheel encoders.

The paper is organized as follows: Sec. II presents re-
lated work. An introduction to sensor fusion using MCP
is presented in Sec. III. In Sec. III-A, a motion model
for omnidirectional robots is developed. A probabilistic
model of measurement errors in ranging obtained from IEEE
802.15.4a is developed in Sec. III-B. Experimental results are
presented in Section IV. Finally, the conclusions are given
in Section V.

II. RelatedWork

Up to now, several kinds of localization techniques are
developed for the use in wireless networks. A review of
existing techniques is given in [8]. These techniques can
be classified by the information they use. These informa-
tions are: Received Signal Strength (RSS), Angle of Arrival
(AoA), Time of Arrival (ToA), Round-trip Time of Flight
(RToF) and Time Difference of Arrival (TDoA).

The best accuracy with a relative low effort offer range-
based techniques. The range-based methods use distances
to known anchors to localize a tag. ToA, RToF and TDoA
estimate the range between two nodes by measuring the
signal propagation delay. To estimate the position of a
mobile device with trilateration, the distances to at least
three anchors have to be measured. Ultra Wide Band (UWB)
offers a high potential for range measurement using ToA,
because the large bandwidth (> 500 MHz) provides a high
ranging accuracy [9]. In [10] UWB range measurements
are proposed for tracking a vehicle in a warehouse. IEEE
802.15.4a specifies two optional signaling formats based on
UWB and Chirp Spread Spectrum (CSS) with a precision
ranging capability. Nanotron Technologies distributes a WSN
with ranging capabilities using CSS as signaling format. A
modification of RToF utilize the nanoLOC WSN from Nan-
otron Technologies. The features and modifications of the
nanoLOC WSN are described in [11]. For the experiments
in this work a nanoLOC network is used.

In order to increase the accuracy of wireless localization
techniques, sensor fusion with complementary sensors can
be used. In [12] sensor fusion of RSSI obtained from a
WSN with computer vision is proposed. Sensor fusion of
RSSI obtained from Wireless LAN and laser range finder
is proposed in [13]. In that paper the authors propose a
hierarchical method which uses the Ekahau location engine
for room level localization in the first step and a laser range
finder for local localization in the second step.

III. Monte Carlo Particlefilter

Distance measurements obtained from IEEE 802.15.4a are
noisy due to None-line-of-sight (NLOS) measurements and
multi-path fading. To estimate the pose of a mobile robot
accurately by using noisy measurements, methods based on
the Bayesian filter are used. The Bayesian filter estimates the
pose of a mobile robot by using probability density functions
which model the measurement errors. An introduction into
the Bayesian filter is given in [14]. One method which is
based on the Bayesian filter is the Kalman Filter (KF). The
KF has approved itself in mobile robots for position tracking.
In [6] the Extended Kalman Filter (EKF) is used to track the
position of a forklift truck. The EKF is an extension of the
KF for non-linear systems. The EKF from [6] is enhanced in
[7] to use distance measurements in NLOS environments. In
both papers the distance measurements from a tag to anchors
of a nanoLOC WSN are used. The KF and EKF rely on
the assumption, that motion and sensor errors are Gaussian
and that the estimated position can be modeled by using a
Gaussian distribution.

Another method which is based on the Bayesian filter is
the Particle Filter (PF). A PF can handle position ambiguities
and does not rely on the assumption, that motion and sensor
errors are Gaussian. Also PF can cope with multi-modal
distributions. In a PF, a set S of N samples is distributed in
the environment or at known places. A sample s is defined by
Cartesian coordinates and an orientation. A widely used PF
for mobile robot localization is the MCP, which is described
in [15], [16] and [17]. The estimated pose of a mobile robot
and its uncertainty about the correctness is represented by
samples. MCP consists of two phases: The prediction phase
and the update phase. In the prediction phase, the motion
information uk is applied on each sample si

k−1 (1 ≤ i ≤ N).
The prediction phase is also called motion model. The result
of the motion model is a new set of samples S k which
represents the positions, where the mobile robot could be
after executing the movement uk.

In the update phase, the set of distance measurements Dk

is used to assign each sample with an importance factor w.
The importance factor complies the probability p(Dk | si

k,m),
i.e. the probability of the distance measurements Dk at
a point in the environment defined by sample si

k and by
using the information from the map m. In m positions of
anchors and landmarks are stored. The result of the update
phase – also called measurement update – is the set of
samples S k of the prediction phase with the corresponding
set of importance weights w[N]

k . Both sets together represent
the current position likelihood of the mobile robot. After
the update phase, the resampling step follows. Inside the
resampling step, samples with a low importance weight are
removed and samples with a high importance factor are
duplicated. The result of the resampling is the set S k of N
samples which represents the current position of the mobile
robot. In the next time step, the set S k is used as S k−1. There
are two options to extract the pose of the mobile robot out of
the sample set S k: The first method is to use the average of
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all samples and the second method is to use the sample with
the highest importance factor. MCPs flow chart is shown in
Fig. 2.

Prediction phase uk

Update phase dlaser,kdnanoLOC,k

Resampling

S k

S k,w
[N]
k

S k = S k−1

Fig. 2. MCP flow chart.

The MCP has the advantage, that it copes with global
localization (no a priori information) and position tracking
(given a priori information). Generally the combination of
sensor specific advantages and the compensation of sensor
specific disadvantages is called sensor fusion. In this paper
the MCP fuses distance measurements from nanoLOC WSN
and laser range finders.

A. Motion Model for Robots with Mecanum Wheels

A probabilistic motion model is needed in the prediction
phase of the MCP. In this section, a new motion model for
omnidirectional robots with Mecanum wheels is derived. An
omnidirectional robot is able to move in any direction and
rotate around its z-axis at the same time. The motion models
found in literature are limited to mobile robots with two
degrees of freedom. The motion model is based on odometry
measurements obtained from wheel encoders. Odometry can
be treated as controls, because most robot operating systems
control the movements of the robot in a closed position
control loop based on odometry. In this case, the command
values of the control loop correspond directly to odometry.
The movements of the robot are corrupted by disturbances
caused by mechanical inaccuracies such as unequal floor
contact and slippage. This disturbances will be treated as
process noise.

Fig. 3. Mecanum wheel

The mobile robot is equipped with Mecanum wheels and
electronic drives, which provide three degrees of freedom. A
Mecanum wheel consists of a central hub with free moving

rollers, which are mounted at 45∘ angles around the hubs’
periphery (Fig. 3). The outline of the rollers is such that
the projection of the wheel appears to be circular. The
omnidirectional robot possesses four motor driven Mecanum
wheels. The wheel configuration of the mobile system is
shown in Fig. 4.
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Fig. 4. Omnidirectional robot with Mecanum wheels

The velocities in the robot frame (ẋR, ẏR, θ̇) are a function
of the four wheel velocities ϕ̇1 . . . ϕ̇4:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ẋR
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (1)

where r is the radius of the wheels, a and b are given by
the dimension of the robot (see Fig. 4). Eqn. (1) is used in
the operating system of the robot to execute odometry. The
inverse equation transforms velocities in the robot frame into
the wheel velocities:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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ẏR
θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Eqn. (2) is used in the operating system of the robot to
control the speeds in robot frame. For more details about
the kinematics of the mobile robot refer to [18].

Between two time steps of the MCP it is assumed, that
the omnidirectional robot moves on a straight line while it
rotates from θk−1 to θk at the same time (Fig. 5). To simplify
calculations, this movement is divided into three independent
movements. First a rotation ∆θ/2, than a translation (∆x,
∆y) without rotation and finally again a rotation ∆θ/2. The
movements described in directions of the robot frame can be
calculated with (1) as:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∆xR

∆yR
∆θ
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Fig. 5. Movement of an omnidirectional robot

With these movements, the new pose in world frame xk =

(xk, yk, θk)T can be calculated based on the pose before the
movement (xk−1):

xk = xk−1 + ∆xR cos
(︁
θk−1 + ∆θ

2

)︁
− ∆yR sin

(︁
θk−1 + ∆θ

2

)︁
yk = yk−1 + ∆xR sin

(︁
θk−1 + ∆θ

2

)︁
+ ∆yR cos

(︁
θk−1 + ∆θ

2

)︁
θk = θk−1 + ∆θ

(4)
The movements of the robot are corrupted by noise caused

by mechanical inaccuracies. Experiments with the omnidirec-
tional robot show, that the noise is mainly caused by slippage
of the Mecanum wheels. Since the slippage of the wheels
depends on the rotational speed of the free spinning rollers,
the uncertainty depends on the direction of the movement in
robot frame. Therefore it is assumed, that the movements of
the robot in robot frame are corrupted by independent noise
εi:

∆x̂R = ∆xR + εx , ∆ŷR = ∆yR + εy , ∆θ̂R = ∆θR + εθ (5)

Furthermore it is assumed, that the noise εi is normally
distributed with zero mean. The standard deviation σi is
proportional to the displacement in robot frame:

σx = αx
x∆xR + α

y
x∆yR + αθx∆θR (6)

σy = αx
y∆xR + α

y
y∆yR + αθy∆θR (7)

σθ = αx
θ∆xR + α

y
θ∆yR + αθθ∆θR (8)

The parameters α j
i are robot-specific constants.

Usually the operating system of the robot returns odometry
values in coordinates of the world frame xo

k = (xo
k , y

o
k , θ

o
k )T.

In this case, the control value of the sampling algorithm con-
tains odometry values from two time steps uk = (xo

k , x
o
k−1)T,

in order to calculate the movement measured by odometry.
Algorithm 1 shows the complete sequence of calculations to
sample the particles. Lines 2 to 4 calculates the movement
in world coordinates, lines 6 and 7 transforms these values
in the robot frame. Lines 8 to 10 sample the displacement
and 12 to 13 calculate the new pose. The function sample(σ)
generates normally distributed noise with standard deviation
σ.

B. Nanoloc Measurement Model

In the update phase, the measurement model is used
to calculate the importance factor w for each sample s.
The measurement model is the probability density function

Algorithm 1 Motion sampling algorithm
1: sample_motion_model(uk, xk−1)
2: ∆x = xo

k − xo
k−1

3: ∆y = yo
k − yo

k−1
4: ∆θ = θo

k − θ
o
k−1

5: θ′ = θk−1 + ∆θ/2
6: ∆xR = ∆x cos θ′ + ∆y sin θ′

7: ∆yR = ∆y cos θ′ − ∆x sin θ′

8: ∆x̂R = ∆xR + sample(αx
x∆xR + α

y
x∆yR + αθx∆θR)

9: ∆ŷR = ∆yR + sample(αx
y∆xR + α

y
y∆yR + αθy∆θR)

10: ∆θ̂ = ∆θ + sample(αx
θ∆xR + α

y
θ∆yR + αθθ∆θR)

11: θ̂′ = θk−1 + ∆θ̂/2
12: xk = xk−1 + ∆x̂R cos θ̂′ − ∆ŷR sin θ̂′

13: yk = yk−1 + ∆ŷR cos θ̂′ + ∆x̂R sin θ̂′

14: θk = θk−1 + ∆θ̂
15: return xk = (xk, yk, θk)T

p(dnanoLOC,k | s[i]
k ,m) which characterizes the measurement

properties and error. The measurement set dnanoLOC,k contains
distance measurements to A anchors. The density function
depends on sensors and environment. To estimate the den-
sity function for nanoLOC distance measurements, LOS-
measurements to four anchors are taken while a mobile robot
moves a straight path between them. While the robot moves,
the ground truth was estimated by laser measurements to
two walls. In Fig. 6, error histograms of measurements to
four anchors are shown. The error is the difference between
measured distance da

k and the Euclidean distance from the
robot position to anchor a.
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Fig. 6. Error histograms of nanoLOC distance measurements to four
anchors. The x-axis is the error in centimeter and the y-axis show their
frequency.

The histograms show, that all measured distances are too
large, the average error is 107 cm. The error depends on the
position of the anchor and on the environment. The median
and standard deviation of the error distributions are different
but they all have a Gaussian structure. Owing to that fact,
it is possible, to use a Gaussian distribution as nanoLOC
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probability density function:

𝒩
(︁
x, µ, σ2

)︁
=

1
√

2πσ2
exp

(︃
−1
2

(x − µ)2

σ2

)︃
(9)

To calculate the importance weight of sample s[i]
k , the Eu-

clidean distance da,i*
k between this sample and the anchor a

is calculated as

da,i* =

√︁
(xi − xa)2 + (yi − ya)2, (10)

where (xa, ya) is the position of Anchor a and (xi, yi) are the
Cartesian coordinates of sample s[i]

k . The Euclidean distance
and the measured distance d[a]

k are used with an anchor
specific constant da

const in a fixed Gaussian distribution:

p
(︁
dnanoLOC,k | s[i]

k ,m
)︁

= c1𝒩
(︁
da,i* − (d[a]

k − d[a]
const), 0, σ

2
)︁

(11)
where da

const is the median of the distance errors shown
in the histograms. The advantages of this fixed Gaussian
distribution are, that a normalization during the localization,
to guarantee

∑︀
p = 1, is not needed and that the domain

can be restricted. This last advantage can be used to detect
estimation failure. If a lot of samples are out of range, new
samples can be drawn in the environment. This fact enables
the MCP to re-localize the mobile robot.

The importance factor of a sample is calculated with:

w[i]
k =

A∏︁
a=1

p
(︁
d[a]

nanoLOC,k | s[i]
k

)︁
·

2∏︁
l=1

p
(︁
d[l]

laser,k | s[i]
k

)︁
(12)

The importance factor w is the product of the probability
of measurements to A anchors and to two landmarks. The
probability p(dl

laser,k |s
[i]
k ,m) is a fixed Gaussian with σ =

100 mm. The landmarks are equipped with reflectors, in order
to allow easy detection by the laser range finders. If no
landmarks are detected, the importance factor is equal the
probability of the distance measurements to A anchors.

IV. Experimental Results

To evaluate the proposed MCP localization, some exper-
iments are conducted at the University of Applied Sciences
and Arts in Dortmund. The mobile robot is equipped with
two Sick 300 laser range finders with a scanning angle of
270°. With both laser range finders, the robot gets a full 360°
scan of the environment. The laser range finders provide a
resolution ∆α of 0.5°. A docking station for hand over of
bins serves as landmark. Two pillars of the docking station
are equipped with reflectors, in order to allow easy detection
by the laser range finders. The mobile robot is equipped with
a nanoLOC tag for ranging and communication purposes. At
the margins of the environments six nanoLOC anchors are
placed.

The robot is moved in manual mode from a starting
point into the docking station. Fig. 7 shows the trajectory
along with the results from MCP. The movements starts at
the position in the lower left corner. The robot is moved
forward first, then sidewards and finally forwards into the
docking station in the upper right corner of Fig. 7. During
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Fig. 7. Position estimation using different sensors.The x- and y-axis of the
environment is scaled in mm.

the movement of the robot, all necessary sensor date for
MCP are stored. These values are the odometry data, distance
measurements to six nanoLOC anchors and the laser range
data. The main localization task for mobile robots is position
tracking. To perform this task, the MCP starts with 1000
samples at a known position with correct orientation. Owing
to an unequal floor contact, the robot has a large slippage,
when it moves sideways. Fig. 7 shows odometry in blue,
MCP estimation using nanoLOC only in red and MCP using
all sensor data in black.

The sample clouds of position tracking are shown in Fig. 8.
In part a) the MCP uses only range data obtained from IEEE
802.15.4a network. Part b) shows tracking and sample clouds
when using IEEE 802.15.4a as well as both laser range
finders. In part a) the particle clouds have a larger vertical
extent than in part b) where laser range finders are used. In
both parts, the vertical extent of the sample clouds is very
large, when the robot moves sideways. This uncertainty is
mainly caused by the high slippage in the yR-direction of
the robot and y-direction of the world frame in Fig. 8. This
uncertainty is modeled by process noise and parameter αy

y,
which has a significantly higher value than αx

x. The extent of
the sample clouds is smaller, if laser range finders are used.
This fact is caused by lower standard deviation of the laser
range finders sensor model. At the end of the movement in
part a) of Fig. 8, the position estimate steps in y-direction of
the world frame. This step is caused by NLOS measurements
in the docking station, because the direct line of sight from
tag to anchors is blocked in the station.

Experimental results show, that the MCP is able to track
the robot’s position properly, even if it uses only nanoLOC
ranging. Using also laser range data improves the position
accuracy and allows docking maneuvers.

V. Conclusions

In this paper, localization and tracking of an omnidirec-
tional mobile robot which was designed to transport Euro-
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Fig. 8. Tracking of an omnidirectional mobile robot using MCP sensor fusion. a) MCP localization using IEEE 802.15.4a ranging only. b) MCP localization
using IEEE 802.15.4a ranging as well as laser range finder. In both pictures, the black line represents the estimated path, the red clouds represent the
particles. The x- and y-axis of the environment is scaled in mm.

bins in a distribution center or warehouse is presented. Lo-
calization is realized by sensor fusion of range measurements
obtained from an IEEE 802.15.4a network and two laser
range finders. The range measurements are fused in a MCP.
The IEEE 802.15.4a network is used for communication as
well as for global localization and two laser range finders are
used for safety as well as for landmark detection and local
localization. The paper has developed a new motion model
for an omnidirectional robot as well as a sensor model for
IEEE 802.15.4a range measurements. The structure of the
measurement model and the landmark detection process was
described.

Experimental results show, that the MCP is able to track
the robot’s position properly, even if it uses only nanoLOC
ranging. Using also laser range data improves the position
accuracy and allows docking maneuvers.
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