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Abstract
Automated Guided Vehicles (AGVs) are used in warehouses, distribution centers and manufacturing plants in order to
automate the internal material flow. Usually AGVs are designed to transport large and heavy transport units such as
Euro-pallets or mesh pallets. Just-in-time inventory management and lean production requires small transportation units
to enable one-piece-flow. A solution to meet these demands are small automatic vehicles for material transport, which
can replace conventional conveyor systems or large AGVs. This paper presents an inexpensive solution for localization
and tracking of small AGVs. Global localization is realized by detection of RFID transponders, which are integrated
in the floor. The measurements of the RFID reader are fused with data from wheel encoders using Quantized Kalman
filtering. The paper presents results from experiments with a NaviFloor®installation. The experiments show, that the
proposed Quantized Kalman Filter provides a similar localization accuracy compared to a Monte Carlo Particle Filter,
but with much lower computational expense.

1 Introduction

Just-in-time inventory management and short production
cycles require flexible material flow as well as usage of
small transportation units [1]. These demands can be
met by using small Automated Guided Vehicles (AGVs).
Several companies have introduced small AGVs for logis-
tic applications. Examples are “The Kiva Mobile Ful-
fillment System (MFS)”, “ADAM™ (Autonomous De-
livery and Manipulation)”, Grenzebach G-Com and G-
Pro, and Adept Lynx. Furthermore, in several research
projects small low cost AGVs are developed. Examples
are “KARIS Kleinskaliges Autonomes Redundantes In-
tralogistik System”, KaTe “Kleine autonome Transportein-
heiten” and LOCATIVE “Low Cost Automated Guided
Vehicle” [2].
Inexpensive localization of small AGVs is an important
issue for many logistic applications and object of current
research activities. A solution for low cost localization
is the dual use of technologies, which are needed for the
operation of the vehicles. One example is the usage of
IEEE 802.15.4a for communication as well as for global
localization and laser range finders for safety as well as
for detecting landmarks and local localization [3].
In several low cost low weight AGVs safety laser range
finders are not implemented, because of their relatively
high cost. A possible solution for global localization is the
usage of auto-ID technology as artificial landmarks. The
Kiva MFS and the Grenzebach G-Com use 2D bar codes
on the floor, which can be detected with a camera by the
AGVs [4]. These bar codes specify the pathways and guar-
antee accurate localization. Drawbacks of this solution
are the risk of polluting the bar codes and the need for
predefined pathways, which restrict the movements of the

AGVs. Another possible solution for global localization is
the usage of Radio Frequency Identification (RFID) tech-
nology as artificial landmarks. Passive RFID technology
is often used in logistics and warehouse management for
object identification and tracking. Typically, the field of
application is defined by the detection range of the RFID
transponders, which depends on the operation frequency.
Low frequency (LF) and high frequency (HF) tags oper-
ate in the near field region with inductive coupling and
therefore support a much lower detection range than ul-
tra high frequency (UHF) tags, which operates in the far
field using backscattering. Usually LF or HF technology
is used for self-localization and UHF technology is used
for object identification in logistics applications [5] and
service robotics [6].
The basic idea of using passive RFID transponders as ar-
tificial landmarks for self-localization of mobile systems
is not new. LF RFID transponders are used to mark a
predefined pathway for navigation of AGVs in industry
since more than two decades [7]. For this purpose, the
transponders are embedded in the ground along the path-
way of the vehicles. LF transponders can be detected by
RFID readers, which are attached at the vehicles. De-
tected transponder are compared with a map that contains
serial numbers of RFID transponders along with their cor-
responding positions. The control system of the AGV
interpolates a trajectory to the next transponder on the
pathway and controls steering and speed. Odometry is
used to move from one transponder to the next one. Thus,
the maximum transponder distance depends on accuracy
of odometry and on expected disturbances.
A known disadvantage of using LF RFID transponders for
AGV navigation is the limited possible speed of the vehi-
cle caused by the low data transfer rate of LF transponders.
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Also LF transponders are comparatively expensive and the
ground must be prepared with holes for these transpon-
ders [8]. Owing to the cost of installation and material, the
transponders are installed on the pathway of the vehicles
only.
An inexpensive option is the usage of cheap standard HF
RFID transponders in the floor. The cost of a passive
transponder is less than 0.2e. A commercially available
product, which employs passive HF RFID transponders in
a floor, is the NaviFloor® manufactured by Future-Shape
[9].

The main contribution of this paper is the development of
a localization algorithm, which fuses the information from
RFID readings with odometry using Quantized Kalman
filtering. Only an inexpensive and small HF RFID reader
and wheel encoders are needed for the proposed localiza-
tion algorithm. The localization accuracy of the proposed
algorithm is comparable to the accuracy of a Monte Carlo
Particle Filter, but requires less computations. Further-
more, this paper extends the motion model for omnidi-
rectional vehicles we have presented in [3]. The motion
model considers uncertainties caused by inaccuracies in
mechanics and speed control of the wheels.
The rest of the paper is organized as follows: Sec. 2
presents related work. In Sec. 3, the characteristics of
the NaviFloor® are described. In Sec. 5, a motion model
for omnidirectional Mecanum based vehicles is developed.
The localization algorithm based on Quantized Kalman
filtering is developed in Sec. 6. Experimental results are
presented in Sec. 7. Finally, the conclusions are given in
Sec. 8.

2 Related Work
In order to allow free navigation of AGVs, some research
on RFID localization using low cost standard passive
RFID tags have been done. Bayesian filtering is a so-
lution for estimation of position and heading (pose) of
a mobile robot by fusing odometry with RFID readings.
Due to the highly non-Gaussian probability distribution of
RFID tag readings, usually Particle Filters (PF) are used
for this purpose [10]. Main drawback of the PF is the com-
putational expense associated with it. Thus, there is some
effort to replace the PF with methods based on Kalman fil-
tering. Lee et al. have developed a Gaussian measurement
model for UHF RFID transponders embedded in the floor,
which is suitable for Kalman filtering [11]. Its application
in a Kalman Filter has less computational expense, but
provides not the same localization accuracy as a PF.
RFID measurements provide quantized measurements,
which can be considered also as noisy dynamic constraints
[12]. Boccadoro et. al. propose a Constrained Kalman
Filter for global localization of mobile robots using UHF
RFID technology and odometry [13]. In that research,
the tags are placed at the walls in an indoor environment.
DiGiampaolo and Martinelli have developed a Quantized
Extended Kalman Filter algorithm for localization on mo-
bile robots using UHF RFID tags at the ceiling [14]. Lev-

ratti et. al. propose a localization algorithm for robotic
lawnmowers based on a modified Constrained Kalman Fil-
ter, that merges odometry with UHF RFID transponders,
which are placed at the border of the working area [15].
For self-localization of mobile systems, the usage of HF
transponders in the floor has some advantages over the
usage of long range UHF technology at the walls or the
ceiling. Usually the detection area is smaller and therefore
the localization accuracy is better compared to long range
UHF technology. Owing to the lower operation range,
HF technology can be used with smaller antennas and
lower radio power. This allows the operation in sensitive
environments like hospitals. Furthermore HF technology
is better applicable in small low cost AGVs, owing to the
smaller size and lower power consumption compared to
UHF technology.
HF RFID technology behaves different from long range
UHF RFID technology, that is investigated in the research
mentioned above, and therefore needs different modeling.
In particular, floor placed HF RFID transponders have a
nearly binary detection characteristic, where the detection
area depends mainly on size and shape of the reader’s
antenna.
There is some research on technical aspects of self-
localization on HF RFID tagged floor like antenna design
[8], [16], antenna placement on the vehicle, [17], [18],
transponder placement on the floor [19], [20], [21], and
optimal detection range of the reader [22].
Since HF RFID technology gives information about the
position only, there is some research on detection the head-
ing of a mobile robot, while the robot is moving. Park
and Hashimoto have proposed an algorithm that estimates
the heading of a mobile robot using the read time of a
RFID system [23]. They measure the time a RFID tag
is detected, while the robots moves over the tag. An-
other possible solution for estimation of the heading is
the Hough transform proposed in [24]. In that research,
the moving space is transformed into an image and the
position of the detected tags are features in the image.
Bayesian filtering is a solution for estimating the heading
of a mobile robot considering the history of movements.
Kodaka et al. apply a PF for pose estimation of a mobile
robot using floor based RFID transponder and odometry
[25]. Choi et al. propose the fusion of ultrasonic sensors,
odometry and readings of HF RFID transponders, which
are integrated in the floor [26].

3 NaviFloor®

The NaviFloor® is a glass fiber reinforcement in which
passive HF RFID transponders are embedded. The
NaviFloor® underlay is delivered in rolls including a map
of the embedded RFID tags, simplifying the installation.
NaviFloor® is specially developed for installation beneath
artificial resin or terrazzo flooring, tiles or elastic flooring.
It is pressure-resistant up to 45 N/mm2 and withstands
even heavy AGVs or fork lift trucks.
We have installed a NaviFloor® in our robotics lab.
Figure 1 shows a picture during the installation proce-
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dure. The RFID tags are installed in a grid of 25 cm. The
whole installation includes nearly a thousand RFID tags.

Figure 1: NaviFloor®Installation in our robotics lab

The tags embedded in the NaviFloor® have a rectangu-
lar shape 45 mm × 45 mm. NXP chips I-CODE SLI are
integrated in the transponders. The transponders are com-
pliant to ISO 15693 and communicate in the 13.56 MHz
HF band.

4 Problem Formulation

We consider the problem of localizing a vehicle in a known
environment. The vehicle is equipped with a RFID reader
and moves over a floor with n RFID transponders. The
position of the transponders is known a priori. The vehicle
moves in 2D space, the pose of the vehicle is defined as
x = (x, y, θ)T. If a transponder Ti ∈ {T1, . . . , Tn} is in
range of the reader, it is detected by the vehicle. The area
where a transponder Ti can be detected by the reader is the
detection areaAi. The probability of detecting a transpon-
der Ti at a position z = (x, y)T inside the detection area
Ai of the reader is 1 and outside the area it is zero:

p(Ti,|z)

{
1 if z ∈ Ai
0 else

(1)

False positive readings do not arise, owing to the short
range of HF RFID technology. Therefore, the RFID reader
can be treated as a binary detector if z ∈ Ai or not. All
positions z that fall in the detection area lead to the same
measurement. If more than one transponder can be de-
tected at the same time, the intersection of the detection
areas of all detected transponders has to be treated as mea-
surement. Generalized, Ti can be assumed as a set of
transponders and Ai as the intersection of the associated
detection areas. The orientation of the read antenna and
therefore the heading of the vehicle may have an influence
on the detection area. Thus in general, a RFID measure-
ment can be interpreted as a quantized measurement of a

position, which depends on the pose of the vehicle:

z = h(x,v) (2)

where z is the quantized measurement, x is the pose of
the vehicle and v is the measurement noise, that models
additional sources of uncertainty:

• Communication delay between RFID reader and
transponder: This delay is caused by limited data
rate of the air interface and the collision avoidance
procedure for multi tag readings.

• Communication delay between control system and
RFID reader: This delay is caused by the processing
time of the reader and the limited data rate on the
interface to the reader.

• Variations in tag placement: Due to production toler-
ances of the NaviFloor®and manual placement, the
position of the RFID tags may differ from regular
grid.

The uncertainty in tag placement can be treated as Gaus-
sian noise. The communication delays causes additional
noise that depends on the speed of the vehicle.
Aim of the pose estimation is to obtain the probability
density p(xk|Ti,xk−1,uk) = p(xk|zk ∈ Ai,xk−1,uk),
where uk is the control input of the vehicle. This can be
achieved by applying a Bayesian filter:

p(xk|zk ∈ Ai,xk−1,uk) =
p(zk ∈ Ai|xk)p(xk|xk−1,uk)

p(zk ∈ Ai)
(3)

where p(zk ∈ Ai|xk) can be obtained from sensor model
(1) and (2) and p(xk|xk−1,uk) is modeled by a motion
model of the vehicle. A motion model for omnidirectional
vehicles is developed in the Sec. 5. The implementation of
(3) in a Particle Filter and a Quantized Extended Kalman
Filter in described in Sec. 6.

5 Motion Model for Vehicles with
Mecanum Wheels

In this section, a motion model for omnidirectional vehi-
cles with Mecanum wheels is derived, which is suitable
for poses estimation using an Extended Kalman Filter
(EKF). The motion model is based on experiments with
our Mecanum driven omnidirectional vehicles and extends
the work presented in [3]. An omnidirectional vehicle is
able to move in any direction and rotate around its z-axis
at the same time. The motion models found in literature
are limited to mobile robots with two degrees of freedom.
The motion model is based on odometry measurements
obtained from wheel encoders. Odometry can be treated
as controls, because most vehicle control systems control
the movements of the vehicle in a closed position control
loop based on odometry. In this case, the command values
of the control loop correspond directly to odometry. The
movements of the vehicle are corrupted by disturbances
caused by mechanical inaccuracies such as uneven floor,
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wheel slippage and inaccuracies in the speed control of
the wheels that lead to coupling errors. This disturbances
will be treated as process noise.

r

φ̇2 φ̇1

φ̇4

xR

yR

b

a
φ̇3

Figure 2: Omnidirectional vehicle with Mecanum wheels

The vehicle is equipped with Mecanum wheels and elec-
tronic drives, which provide three degrees of freedom.
The omnidirectional vehicle possesses four motor driven
Mecanum wheels. The wheel configuration of the mobile
system is shown in Figure 2. The velocities in the vehicle
(robot) frame (ẋR, ẏR, θ̇) are a function of the four wheel
velocities ϕ̇1 . . . ϕ̇4:
ẋR

ẏR

θ̇
ϕ̇e

 = J


ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

 , J =
r

4


1 1 1 1
−1 1 −1 1
1
a+b

−1
a+b

−1
a+b

1
a+b

4
r

4
r − 4

r − 4
r


(4)

where r is the radius of the wheels, a and b are given by
the dimension of the vehicle (see Figure 2). An angular er-
ror velocity ϕ̇e 6= 0 causes a coupling error of the wheels
and thus additional wheel slippage. Eqn. (4) is used in the
operating system of the vehicle to execute odometry. The
inverse equation transforms velocities in vehicle frame
into the wheel velocities:

ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

 = J−1


ẋR

ẏR

θ̇
ϕ̇e

 (5)

Eqn. (5) is used in the operating system of the vehicle to
control the speeds in vehicle frame. The control variable
ϕ̇e can be used to force the coupling error ϕe to zero [27].
For more details about the kinematics of the vehicle refer
to [28].
Velocities in the vehicle frame can be transformed into the
world frame, if the heading θ of the vehicle is known.

ẋR = R(θ) ẋW, ⇒ ẋW = R−1(θ) ẋR (6)

with ẋW =

ẋW

ẏW

θ̇

 , ẋR =

ẋR

ẏR

θ̇

 ,

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1



Between two time steps of odometry it is assumed,
that the omnidirectional vehicle moves on a straight
line while it rotates from θk−1 to θk at the same time
(see Figure 3). To simplify calculations, this move-
ment is divided into three independent movements.
First a rotation ∆θ/2, than a translation (∆x, ∆y)
without rotation and finally again a rotation ∆θ/2.

xR
θk−1

yR

θk
yW

xk−1 xk xW

yk−1

yk

Figure 3: Movement of an omnidirectional vehicle

The movements described in directions of the vehicle
frame can be calculated with (4) as:

∆xR

∆yR

∆θ
∆ϕe

 = J


∆ϕ1

∆ϕ2

∆ϕ3

∆ϕ4

 (7)

With these movements, the new pose in world frame
xk = (xk, yk, θk)T can be calculated based on the pose
before the movement (xk−1):

xk = xk−1 + ∆xR cos
(
θk−1 + ∆θ

2

)
−∆yR sin

(
θk−1 + ∆θ

2

)
yk = yk−1 + ∆xR sin

(
θk−1 + ∆θ

2

)
+∆yR cos

(
θk−1 + ∆θ

2

)
θk = θk−1 + ∆θ

(8)

5.1 Uncertainty Modeling
The movements of the vehicle are corrupted by noise
caused by mechanical inaccuracies. Experiments with
the omnidirectional vehicle show that the noise is mainly
caused by slippage of the Mecanum wheels. Since the
slippage of the wheels depends on the rotational speed of
the free spinning rollers, the uncertainty depends on the
direction of the movement in vehicle frame. Therefore, it
is assumed that the movements of the vehicle in vehicle
frame are corrupted by independent noise εi:

∆x̂R = ∆xR+εx , ∆ŷR = ∆yR+εy , ∆θ̂R = ∆θR+εθ
(9)

Furthermore, it is assumed that the noise εi is normally
distributed with zero mean εi = N (0,σ2

i ). The standard
deviation σi is proportional to the displacement in the
vehicle frame and changes in the coupling error ∆ϕe:

σxσy
σθ

 =

αxx αyx αθx αe
x

αxy αyy αθy αe
y

αxθ αyθ αθθ αe
θ




∆xR

∆yR

∆θR

∆ϕe

 (10)
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The parameters αji are vehicle-specific constants, which
have to be identified by experiments.
With the additional noise, the motion model can be de-
scribed as follows:

xk = f(xk−1,uk,wk), with xk =

xkyk
θk

 ,

(11)

uk =


∆xR

∆yR

∆θR

∆ϕe

 , wk =

εxεy
εθ


xk = xk−1 + (∆xR + εx) cos

(
θk−1 + ∆θ+εθ

2

)
−(∆yR + εy) sin

(
θk−1 + ∆θ+εθ

2

)
yk = yk−1 + (∆xR + εx) sin

(
θk−1 + ∆θ+εθ

2

)
+(∆yR + εy) cos

(
θk−1 + ∆θ+εθ

2

)
θk = θk−1 + ∆θ + εθ

(12)

5.2 Linearization

In order to use the motion model in an EKF, f(•) has
to be linearized. In the prediction step of the EKF, the
estimated pose of the vehicle

x̂k = f(x̂k−1,uk,0) (13)

and the covariance of the pose

Pk = ΦkPk−1Φ
T
k +WkQkW

T
k , (14)

can be calculated based on f(•) and its Jacobians Φk and
Wk:

Φk =
∂f

∂x
(x̂k−1,uk,0) = (15)

1 0 −∆xR sin θ′k−1 −∆yR cos θ′k−1

0 1 ∆xR cos θ′k−1 −∆yR sin θ′k−1

0 0 1

 ,

with θ′ = θk−1 +
∆θ

2

Wk =
∂f

∂w
(x̂k−1,uk,0) = (16)

cos θ′ − sin θ′ − 1
2∆xR sin θ′ − 1

2∆yR cos θ′

sin θ′ cos θ′ 1
2∆xR cos θ′ − 1

2∆yR sin θ′

0 0 1

 .

The process covariance matrix

Qk =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (17)

can be calculated using (10).

5.3 Motion Sampling Algorithm

Eqn. (12) can be used to develop the motion sam-
pling algorithm, which is needed by the Monte
Carlo localization procedure. Algorithm 1 shows
the sequence of calculations to sample the particles.

1: sample_motion_model(xk−1, uk)

2:

σxσy
σθ

 =

αxx αyx αθx αe
x

αxy αyy αθy αe
y

αxθ αyθ αθθ αe
θ

 · uk
3: ∆x̂R = ∆xR + sample(σx)
4: ∆ŷR = ∆yR + sample(σy)

5: ∆θ̂ = ∆θ + sample(σθ)

6: θ̂′ = θk−1 + ∆θ̂/2

7: xk = xk−1 + ∆x̂R cos θ̂′ −∆ŷR sin θ̂′

8: yk = yk−1 + ∆ŷR cos θ̂′ + ∆x̂R sin θ̂′

9: θk = θk−1 + ∆θ̂
10: return xk = (xk, yk, θk)T

Algorithm 1: Motion sampling algorithm

6 Proposed Localization Algorithm

This section describes the pose estimation (see (3)) in two
different types of Bayesian filters. As mentioned before,
usually Particle filters are deployed in RFID localization
algorithms, because of the highly nonlinear and quantized
measurements by the RFID reader. A Particle Filter will
be used as benchmark for our proposed localization algo-
rithm based on Quantized Kalman filtering.

6.1 Measurement Update for Particle Fil-
ters

For global localization, the particle set is uniformly dis-
tributed over the operation area of the vehicle. Alterna-
tively, after detecting the first tag, particles are uniformly
distributed over the detection area of the detected tag. The
motion update is executed according to Algorithm 1
The measurement update in a particle filter is straight
forward (see also [25]). After the vehicle has detected a
RFID transponder, the corresponding detection area is cal-
culated. After that, each particle xjk is distributed through
the measurement function (2) and then weighted with the
associated probability (wj = p(Ti|zk)). In our case, the
probability inside the detection area is p(Ti|zk ∈ Ai) = 1,
outside the detection area zero (wj = 0). If no particle
falls inside the detection area (

∑
wj ≈ 0), the particle set

has to be reinitialized. In this case, the particles are uni-
formly distributed over the detection area Ai. Otherwise,
the particle set is normalized and resampled.
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6.2 Measurement Update for Kalman Fil-
ters

In contrast to the Particle Filter, a Kalman Filter has to be
initialized with a rough initial state of the vehicle. Since a
RFID reading provides no information about the heading
of the vehicle, at least two RFID readings are necessary
to initialize the Kalman Filter. This initial procedure is
a kind of map-matching between the initial local map of
the vehicle processed by odometry and the global map
including the tag positions. The heading can be estimated
after detecting two RFID tags (Ti, Tj):

θ̂k = θl
k + atan2(∆y,∆x)− atan2(∆yl,∆xl), (18)

where θl
k is the local heading while detecting the second

tag, ∆x = xj − xi, ∆y = yj − yi are the distances be-
tween the detected tags and ∆yl,∆xl are the distances
of the trajectory traveled in the local map. θl

k has to be
considered, because an omnidirectional vehicle can move
in any direction without changing its heading. The esti-
mation of θ̂k is very rough, because ∆x ∆y are quantized
with the grid size of the RFID tags.
After global localization, we apply Quantized Kalman
filtering for position tracking. The detection of a transpon-
der can be considered as a quantized measurement of a
position (z = h(x,v), z ∈ Ai, see (2)). The size of the
detection area Ai is a measure of the uncertainty in the
measurement. The probability is distributed uniformly:

p(z|z ∈ Ai) =

{
1
|Ai| if z ∈ Ai
0 else

(19)

where |Ai| is the size of Ai:

|Ai| =
∫
Ai

dz (20)

We apply the Gaussian-Fit Algorithm proposed by Curry
[29, p. 23–25] to Extended Kalman filtering. The first
and second moment of p(z|z ∈ Ai) are needed in the
measurement update of the Quantized EKF (QEKF). For
notational convenience let

µi = E(z|z ∈ Ai) , Σi = cov(z|z ∈ Ai).

The mean

µi =

∫
p(z|z ∈ Ai) z dz =

1

|Ai|

∫
Ai
z dz (21)

and the covariance

Σi =

∫
∆z∆zTp(z|z ∈ Ai)dz (22)

=
1

|Ai|

∫
Ai

∆z∆zTdz with ∆z = z − µi

of all detection areas Ai can be calculated in advance us-
ing numerical integration. Additional measurement noise
caused by communication delays and tag misplacement

due to production tolerances can be modeled with a ran-
dom variable vk. We assume that vk is normally dis-
tributed with zero mean (vk ∼ N (0,Rk)).
Before the measurement update is performed, we check
the innovation of the measurement Ti. If ẑ = h(x̂k,0) ∈
Ai, the innovation is zero and the detection of Ti gives no
additional information. Thus no measurement update is
performed. The measurement update is performed only,
if ẑ /∈ Ai. The measurement update is similar to the
standard EKF algorithm:

Kk = PkH
T
k

(
HkPkH

T
k +Rk

)−1
(23)

x̂+
k = x̂k +Kk (µi − h(x̂k,0)) (24)

P+
k = (I −KkHk)Pk +Kk ΣiK

T
k (25)

whereKk is the Kalman gain andHk = ∂h
∂x (x̂k,0). The

derivation of (25) can be found in [29, p. 12]

7 Experimental Evaluation

7.1 Experimental Setup
We use a SkyeModule M1 as RFID reader. The HF
antenna of the reader has a rectangular shape 38 mm
× 40 mm. A transponder is detected, if the anten-
nas of transponder and reader have a small overlap.
With maximum overlap, the detection range between
reader and antenna is 50 mm. We have mounted the
reader at a distance of 30 mm to the floor in the ori-
gin of the vehicle frame. At this distance, the detec-
tion area of the reader has a circular shape with a di-
ameter of 90 mm (see Figure 4). The orientation of the
reader has only a small impact on the detection area.

45 mm

90 mm

Ai

Ti

Figure 4: Detection area Ai of RFID transponder Ti

The RFID transponders in the floor are placed in a regular
grid of 250 mm. Thus, at most one RFID transponder can
be detected at any moment. In case of a circular shape, µi
is the center of the circle and

Σi =

(
R2

4 0

0 R2

4

)

where R is the radius of the circle. The measurement
function

zk = h(xk,vk) = Hxk + vk with H =

(
1 0 0
0 1 0

)
is linear with additional measurement noise vk ∼
N (0,Rk).
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7.2 Experimental Results

We have made some experiments with one of our omnidi-
rectional vehicles in our lab on the NaviFloor® installation.
Figure 5 shows results from one of our experiments. The
vehicle moves a square path 2 m × 2 m several times with
a velocity of 350 mm/s. The heading is constant during
the whole movement (θ = 270°). The path of the vehicle
is controlled by odometry and gyroscope. The sample
time of odometry is 3 ms and the sample time of the RFID
reader is 20 ms. Global localization of the vehicle is real-
ized with the proposed QEKF that fuses data from wheel
encoders and RFID readings. Pose estimation is started
after the second RFID tag is detected. The initial state
of the QEKF is estimated as described in Sec. 6.2. The
estimated position of the vehicle is printed in red. The
pose of the robot estimated by odometry only is shown
in green. In Figure 5 RFID tags that are detected by the
vehicle are shown as black circles.
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Figure 5: Experimental results

The accuracy of the QEKF is similar to a PF but with
much less computational expense. Since no exact ground
truth is provided by our experimental equipment, exact
measures can not be given. It is estimated, that the mean
error of the pose estimate in our experiments is lower than
30 mm.

8 Conclusions

In this paper, we have presented a localization algorithm
based on Quantized Kalman filtering that fuses sensory
data from wheel encoders with RFID readings. The RFID
readings are assumed as quantized measurements of the
vehicle’s position. This assumption considers the quan-
tized nature of floor-installed HF RFID readings. The
detection area is approximated by a normal distribution
using the Gaussian-Fit Algorithm. The localization accu-
racy of the QEKF is similar to a PF but with much less
computational expense. The localization concept is suit-
able for small and inexpensive AGVs, since the vehicles
need only a inexpensive and small HF RFID reader.
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