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Abstract—A wireless sensor network consist of spatially dis-
tributed autonomous sensor nodes for data acquisition. Accurate
localization of sensor nodes is a strong requirement in a wide
area of applications. This paper describes the localization of
sensor nodes using range measurements and trilateration with the
Extended Kalman Filter. The commercially available nanoLOC
sensor network is utilized for range measurements. Experimental
results show, that a localization accuracy better than 0.5m can
be achieved in most cases.

I. Introduction

A wireless sensor network (WSN) consist of spatially
distributed autonomous sensor nodes for data acquisition.
Besides military applications and monitoring of physical or
environmental conditions, robotics [1] and logistics [2] are
typical application fields of WSN. Accurate localization of
load carriers such as pallets or containers is a strong demand
in many logistics applications. Via a WSN the location of
nodes can be identified, so that the whole material flow process
within a warehouse can be monitored. This paper studies the
tracking of a forklift trucks (Fig. 1) using a nanoLOC WSN
in conjunction with an Extended Kalman Filter.

Fig. 1. Forklift truck in a warehouse

Up to now several kinds of localization techniques are
developed for the use in wireless networks. A review of
existing techniques is given in [3]. These techniques can be
classified by the information they use. These informations
are: connectivity, Received Signal Strength (RSS), Angle of
Arrival (AoA), Time of Arrival (ToA), Round-trip Time of
Flight (RToF) and Time Difference of Arrival (TDoA).

Connectivity information is available in all kinds of wireless
networks. The accuracy of localization depends on the range of
the used technology and the density of the beacons. In cellular
networks Cell-ID is a simple localization method based on cell
sector information. In infrastructure mode of a Wireless LAN
(WLAN), the access point (AP) to which the mobile device is
currently connected, can be determined since mobile devices
know the MAC hardware address of the AP, which they are
connected to. In a WSN with short radio range, connectivity
information can be used to estimate the position of a sensor
node without range measurement [4].

RSS information can be used in most wireless technologies,
since mobile devices are able to monitor the RSS as part
of their standard operation. The distance between sender
and receiver can be obtained with the Log Distance Path
Loss Model described in [5]. Unfortunately, the propagation
model is sensitive to disturbances such as reflection, diffraction
and multi-path effects. The signal propagation depends on
building dimensions, obstructions, partitioning materials and
surrounding moving objects. Own measurements show, that
these disturbances make the use of a propagation model
for accurate localization in an indoor environment almost
impossible [6]. A method to overcome this disadvantage is
fingerprinting, which is introduced in [7] and uses a radio
map. Fingerprinting is divided in two phases: In the initial
calibration phase, the radio map is built by moving around
and storing RSS values at various predefined points of the
environment. In the localization phase, the mobile device
moves in the same environment and the position is estimated
by comparing the current RSS values with the radio map. A
metric to compare the measured RSS values with the radio
map is Euclidean distance proposed in [7]. Other approaches
use a Bayesian algorithm [8] or Delaunay triangulation with
lines of constant signal strength [9].

AoA determines the position with the angle of arrival from
fixed anchor nodes using triangulation. In [10] a method is
proposed, where a sensor node localizes itself by measuring
the angle to three or more beacon signals. Each signal consists
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of a continuous narrow directional beam, that rotates with a
constant angular speed. Drawback of AoA based methods is
the need for a special and expensive antenna configuration e.g.
antenna arrays or rotating beam antennas.

ToA, RToF and TDoA estimate the range to a sender by
measuring the signal propagation delay. The Cricket local-
ization system [11] developed at MIT utilizes a radio signal
and an ultrasound signal for position estimation based on
trilateration. TDoA of these two signals are measured in order
to estimate the distance between two nodes. This technique
can be used to estimate the position of a node in a WSN [12]
or to track the position of a mobile robot [13]. Ultra-Wideband
(UWB) offers a high potential for range measurement using
ToA, because the large bandwidth (> 500 MHz) provides a
high ranging accuracy [14]. The new WSN standard IEEE
802.15.4a specifies two optional signalling formats based on
UWB and Chirp Spread Spectrum (CSS) with a precision
ranging capability [15]. Nanotron Technologies distributes a
WSN with ranging capabilities using CSS as signalling format.

II. The nanoLOC Localization System

Nanotron Technologies has developed a WSN which can
work as a Real-Time Location Systems (RTLS). The distance
between two wireless nodes is determined by Symmetrical
Double-Sided Two Way Ranging (SDS-TWR). SDS-TWR
allows a distance measurement by means of the signal prop-
agation delay as described in [16]. It estimates the distance
between two nodes by measuring the RToF symmetrically
from both sides.

The wireless communication as well as the ranging method-
ology SDS-TWR are integrated in a single chip, the nanoLOC
TRX Transceiver [17]. The transceiver operates in the ISM
band of 2.4 GHz and supports location-aware applications
including Location Based Services (LBS) and asset tracking
applications. The wireless communication is based on Nan-
otron’s patented modulation technique Chirp Spread Spectrum
(CSS) according to the wireless standard IEEE 802.15.4a. Data
rates are selectable from 2 Mbit/s to 125 kbit/s.

SDS-TWR is a technique that uses two delays, which occur
in signal transmission to determine the range between two
nodes. This technique measures the round trip time and avoids
the need to synchronize the clocks. Time measurement starts in
Node A by sending a package. Node B starts its measurement
when it receives this packet from Node A and stops, when it
sends it back to the former transmitter. When Node A receives
the acknowledgment from Node B, the accumulated time
values in the received packet are used to calculate the distance
between the two stations (Fig. 2). The difference between the
time measured by Node A minus the time measured by Node
B is twice the time of the signal propagation. To avoid the
drawback of clock drift the range measurement is preformed
twice and symmetrically. The signal propagation time td can
be calculated as

td =
(T1 − T2) + (T3 − T4)
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Fig. 2. Symmetrical Double-Sided Two Way Ranging [17]

where T1 and T4 are the delay times measured in node A in
the first and second round trip respectively and T2 and T3 are
the delay times measured in node B in the first and second
round trip respectively. This double-sided measurement zeros
out the errors of the first order due to clock drift [16].

Based on the nanoLOC TRX transceiver and the micro-
controller ATmega 128L, the nanoLOC WSN can be used
for developing location-aware and distance ranging wireless
applications [18]. A mobile tag localizes itself by measuring
the distances to a set of anchors as reference points. The
anchors are located to predefined positions within a Cartesian
coordinate system (Fig. 3). The tag position can be calculated
by trilateration.
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Fig. 3. Localization of a mobile tag based upon the distances to the four
anchors

In the Fig. 3, (px, py) represents the x- and y-position of
the mobile tag to be located. The positions (ax,i, ay,i) with
i ∈ {1, 2, 3, 4} are the x- and y-positions of the four anchors.
The variables ri incorporate the four distances between the tag
and the anchor nodes. At least three distances are required to
calculate the position of the tag.
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III. Localization of Sensor Nodes Using the Extended
Kalman Filter

By monitoring a dynamic system, the interior process state
such as position and velocity of mobile objects is not direct
accessible. The distance measurements are subject to errors
and noise. The Kalman Filter is an efficient recursive filter,
which estimates the state of a dynamic system out of a series of
incomplete and noisy measurements by minimizing the mean
of the squared error. It is also shown to be an effective tool in
applications for sensor fusion and localization.

The equations of the Kalman Filter fall into two groups:
“predictor equations” and “corrector equations”. Based on the
system input parameters, the current state estimate and error
covariance estimate are projected forward to obtain the pre-
dicted a priori estimates for the next time step. This operation
is called “time update”. Following an actual measurement is
incorporated into the a priori estimate to obtain an improved
a posteriori estimate. In other words the measurements adjust
the predicted estimate at that time, so that this operation
is denoted “measurement update”. As initial values for the
primary estimation x̂0 and P0 are passed. After each time
and measurement update pair, the process is repeated with the
previous a posteriori estimates. This recursive nature is one of
the appealing features of the Kalman Filter and the essential
advantage over other stochastic estimation methods. The filter
recursively conditions the current estimate on all of the past
measurements and can be used in real-time applications.

The basic filter is well-established, if the state transition
and the observation models are linear distributions. In the
case, if the process to be estimated and/or the measurement
relationship to the process is specified by a non-linear stochas-
tic difference equation, the Extended Kalman Filter (EKF)
can be applied. This filtering is based on linearizing a non-
linear system model around the previous estimate using partial
derivatives of the process and measurement function.

Fig. 4 shows a complete picture of the operations of the EKF
by presenting the specific predictor and corrector equations.
The time update projects the a priori state and covariance
estimates forward from time step to step. The first task during
the measurement update is to compute the Kalman gain Kk.
The next step is to generate an a posteriori state estimate x̂k+1
as the result of the filter, in this case. The final step is to obtain
the corresponding error covariance estimate Pk+1 for the next
iteration.

Predictor Equations

x*k+1 = f (xk, uk, 0)
P*k+1 = Ak+1 PkAk+1T + Wk+1 QkWk+1

T

Corrector Equations

Kk+1 = P*k+1Ck+1T ∙ (Ck+1P*k+1Ck+1T + Vk+1Rk+1Vk+1T)‐1
xk+1 = x*k+1 + Kk+1 ∙ (yk+1 – h (x*k+1, 0))

Pk+1 =  (I ‐ Kk+1 Ck+1) ∙ P*k+1

^

^

Initial estimates for x0 und P0^

Fig. 4. Time update and measurement update equations of the Extended
Kalman Filter

A. Design of the Extended Kalman Filter

The Extended Kalman Filter is suitable to determine the x-
and y-position of the mobile tag with the measured distances
to the four anchors. Using the trilateration method the anchor
distances ri with i ∈ {1, 2, 3, 4} are calculated as follow:

ri =

√
(px − ax,i)2 + (py − ay,i)2

. (2)

To gain the unknown tag position, the equations in (2) are
solved for px and py, and are transformed in matrices:

H ·
(
px

py

)
= z with H =

2 · ax,1 − 2 · ax,2 2 · ay,1 − 2 · ay,2
2 · ax,1 − 2 · ax,3 2 · ay,1 − 2 · ay,3
2 · ax,1 − 2 · ax,4 2 · ay,1 − 2 · ay,4

 ,
and z =

r2
2 − r1

2 + ax,1
2 − ax,2

2 + ay,1
2 − ay,2

2

r3
2 − r1

2 + ax,1
2 − ax,3

2 + ay,1
2 − ay,3

2

r4
2 − r1

2 + ax,1
2 − ax,4

2 + ay,1
2 − ay,4

2


.

(3)
Eqn. 3 can be solved using the method of least squares:(

p̂x

p̂y

)
= (HTH)−1HT · z (4)

The EKF addresses the general problem of estimating the
interior process state of a time-discrete controlled process, that
is governed by non-linear difference equations:

x̃k+1 = f (x̂k,uk,wk)
ỹk = h(x̃k, vk). (5)

The state vector xk contains the tag position to be estimated
as well as the first and second derivatives:

xk =
(
px vx ax py vy ay

)T
, (6)

where px, py define the position, vx, vy represent the velocity
and ax, ay define the acceleration. The optional input control
vector uk is set to zero. The observation vector yk represents
the observations at the given system and defines the entry
parameters of the filter, in this case the results of the range
measurements. The process function f relates the state at the
previous time step k to the state at the next step k + 1. The
measurement function h acts as a connector between xk and
yk. The notation x̃k and ỹk denotes the approximated a priori
state and observation, x̂k typifies the a posteriori estimate of
the previous step. Referring to the state estimation, the process
is characterized with the stochastic random variables wk and
vk representing the process and measurement noise. They
are assumed to be independent, white and normal probably
distributed with given covariance matrices Qk and Rk. To
estimate a process with non-linear relationships the equations
in (5) must be linearized as follow:

xk+1 ≈ x̃k+1 + Ak · (xk − x̂k) + Wk · wk

yk ≈ ỹk + Ck · (xk − x̃k) + Vk · vk ,
(7)

where Ak,Wk,Ck and Vk are Jacobian matrices with the partial
derivatives:

Ak =
∂ f
∂x (x̂k,uk, 0) Wk =

∂ f
∂w (x̂k,uk, 0)

Ck = ∂h
∂x (x̃k, 0) Vk = ∂h

∂v (x̃k, 0).
(8)
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Because in the analyzed system the predictor equation contains
a linear relationship, the process function f can be expressed
as a linear equation, where the transition matrix Ak is defined
as:

A =



1 T T 2/2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T 2/2
0 0 0 0 1 T
0 0 0 0 0 1


,

(9)

where T is the constant sampling time. The observation vector
yk contains the current measured distances to four anchors:

yk =
(
r1 r2 r3 r4

)T
. (10)

The initial state estimate x̂0 is calculated based on (3). For
the subsequent estimation of the tag position (px, py) the
functional values of the non-linear measurement function h
must be approached to the real position. The function h
comprises the trilateration equations (2) and calculates the
approximated measurement ỹk to correct the present estimation
x̃k. The equation ỹk = h(x̃k) is given as:


r1
r2
r3
r4

 =


√

(px − ax,1)2 + (py − ay,1)2√
(px − ax,2)2 + (py − ay,2)2√
(px − ax,3)2 + (py − ay,3)2√
(px − ax,4)2 + (py − ay,4)2


.

(11)

The related Jacobian matrix Ck = ∂h
∂x (x̃k) describes the partial

derivatives of h with respect to x:

Ck =


∂r1
∂px

0 0 ∂r1
∂py

0 0
∂r2
∂px

0 0 ∂r2
∂py

0 0
∂r3
∂px

0 0 ∂r3
∂py

0 0
∂r4
∂px

0 0 ∂r4
∂py

0 0

 with

∂ri
∂px

=
px−ax,i√

(px−ax,i)2+(py−ay,i)2

∂ri
∂py

=
py−ay,i√

(px−ax,i)2+(py−ay,i)2
.

(12)
Given that h contains non-linear difference equations the
parameter r1, r2, r3 and r4 as well as the Jacobian matrix Ck

must be calculated newly for each estimation.

B. Parameter Tuning

The effect of the Kalman estimation depends significantly
on the parameters of the covariance matrices. To preferably
gain an exact estimation, appropriate values for the process
noise covariance Qk and the measurement noise covariance
Rk must be detected. The process noise covariance represents
the accuracy of the estimates for the interior process state. The
measurement noise covariance depends directly on the envi-
ronment of the range measurements. Several experiments with
different anchors show covariances in a range between 0.0216
and 0.354. The measurement noise covariance is chosen with
Rk = 0.1328 · I as mean variance of all experiments.

C. Experiment Results

In a test series, the position of a forklift truck is tracked
using the described method. The forklift truck shown in Fig. 1
can be operated in automatic and manual mode. The forklift
truck moves in automatic mode along an oval course. The
standard NanoLOC development kit which contains five sensor
boards with sleeve dipole omnidirectional antennas is utilized
for the experiment. Four anchor nodes (A1. . .A4) are placed
at the edges of the course as shown in Fig. 5. The sampling
time T is chosen to 0.3 s.

A4

A1

Tag

A3

A2

A4

A1

Tag

A3

A2

Fig. 5. Trajectory of the fork lift truck

Fig. 6 presents the result of this experiment. The red dashed
line shows the course of the forklift truck with the starting
point indicated as triangle. The raw trilateration (green dots)
calculated with Eqn. (4) shows large peak errors of up to
several meters. Large errors occur because the line-of-sight
(LOS) propagation on the transmission path between the tag
and anchor nodes is blocked in some positions. So the signal
propagation is conducted through reflection and scattering
which results in large ranging errors. This phenomenon is the
main source for the observed errors in the raw trilateration.
The estimated position of the EKF (blue line) removes the
measurement noise and shows an accuracy better than 0.5 m
in most cases.

IV. Conclucions and future works

In this paper, the accuracy of localization with the nanoLOC
TRX transceiver is evaluated. The position accuracy of the
estimation is better than than 0.5m in most cases. The main
source for ranging errors is non-line-of-sight (NLOS) and
multi-path signal propagation. As already mentioned, the
trilateration method just requires three ranging information.
An approach to detect NLOS measurements is to measure
the distance to more than three anchor nodes and to use this
redundancy to detect errors. These measurements have to be
disregarded in order to improve the accuracy and reliability.
Another technique to mitigate NLOS and multi-path errors
is the Biased Kalman Filter presented in [19]. This filtering
uses the estimated standard deviation to mitigate the NLOS
error through increasing parameters of the measurement noise
covariance matrix.
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Fig. 6. Results of the Extended Kalman Filtering
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